
Fame
The Reference for Customization

© 2000-2017 by Piotr Bednaruk
All Rights Reserved

Introduction

Do you know one single man who has ever read an introduction to some reference? Neither do I. So
please just hit Page Down.

Configuring Notepad++

It is very convenient to have a dedicated text editor with syntax highlighting and other cool stuff to
create and maintain scripts. One example of such an editor is Notepad++. Its quite fast, stable and
full of useful features. Fame comes with a set of syntax highlighting files especially for Notepad++,
so that you receive:

● syntax coloring

● code completion and parameter hints for all U functions

● quick compilation/syntax check

● colored compilation error report with line numbers and double-click support

Syntax coloring

In the Tools directory you will find two files, u.xml and u_udl.xml. The first one contains U
functions, their parameters and short descriptions. The second one contains keywords and some
other syntax information. You need to copy u.xml to Notepad++/plugins/APIs. Then start
Notepad++ and select “View → User-Defined Dialogue...”. Click the “Import” button and browse
to the u_udl.xml. This will load U syntax rules. You should now have the U entry in the Language
menu.

If you want the code completion and function parameters hint features, you must enable them
(Settings → Preferences → Auto-Completion). The recommended configuration is: “Enable auto-
completion on each input”, “Function completion” and “Function parameters hint on input”. You
can also change the “From nth character” setting to 2.

Compiling scripts

If you want to be able to compile scripts, you need to install a plug-in. It is called NppExec. As you
are done with the installation (just copy NppExec's DLL file to the Notepad++'s directory
“plugins” and restart the program), you should be able to access the NppExec menu (in “Plugins”)
and choose “Execute”. The command to enter in the dialog box is:

cmd /c chdir c:\fame && c:\fame\fame.exe "$(FULL_CURRENT_PATH)"

Of course you might want to provide different path to Fame. You can save the command to be

invoked later. Let's save it as “Execute Fame”. It's nice to have a keyboard shortcut, so you can go
to “Plugins → NppExec → Advanced Options”. In the “Menu items” section, you can add a new
item, let's call it “Fame”. Then select a command you have just entered (Execute Fame). Now go to
“Settings → Shortcut Mapper” (in Notepad++'s menu) and select the “Plugin commands” tab. Find
“Fame”, double-click it, and assign your favorite compilation key shortcut to it. Restart Notepad++.
Now you should see your new command “Fame” in the “Plugins → NppExec” menu. Please note
that the key might have been already mapped to some other command (most likely a native
Notepad++ feature – there are so many of them) – better check it twice!

Handling compilation errors

Last but not least, if an error is found in a script, you probably wish to know the exact place where
the error occurred. This can be done in “Plugins → NppExec → Console Output Filters”. Place a
check mark next to a free slot and type in:

%LINE%: error*

You can also change font color (on the right) to 0xFF, 0x00, 0x00 (red) and make it bold, so that
error messages differ from regular output. Now, as the game engine encounters an error during a
syntax check, it will appear in the Notepad++ console in red. You can even double-click the error
message and you are immediately transferred to the line that contains the error.

One more thing you can do for comfortable work with U scripts is automatic removal of certain
output printouts. Switch to the 'Replace' tab in the 'Console Output Filters' window and add entries
for any printout that you feel is unnecessary with NppExec, such as copyright lines or memory leak
detection status.

Now you have a complete IDE for developing Fame scripts! :-)

U Scripting Language
Plenty of things in the game (including conversations with NPCs) are set up using a scripting
language called U. It is not necessary to be good at any programming language to make mods. You
can only use a small subset of its features to create simple quests. Using U can extend your
possibilities greatly, though.

At the moment, U is interpreted, not compiled. This means that it's terribly slow, but you don't have
to worry about the compilation stuff. Actually, compilation IS supported, but executing compiled
code is not. Nevertheless, you can make an EXE file out of your script (and it's not a script injected
into interpreter's executable – it's really compiled!). This feature is as pretty as it's useless ;-).

You can write your scripts in any text editor and use the game engine to execute them, as well as to
just test its correctness. Please refer to the manual for details on the engine's command line.

Several character encoding types can be used, but UTF-8 without BOM is recommended, as it is
widely accepted as a portable encoding type.

Script types

There are four major script types in Fame. They all share the same *.u extension and have the same
syntax, but they are executed in slightly different manners. The types are:

● NPC scripts
● Global declarations
● General purpose scripts
● Trade profiles
● Location scripts
● Item scripts
● The Handler
● The OnLoad Script

The first (and "the most popular") group contains dialog scripts. They handle chatting with NPC's
and all the stuff it involves (quests!). They also may contain some adjustments of NPC's parameters
(the ones that cannot be set in monsters.ini), e. g. trade profiles. These are the only files that allow
defining actions. What is more, statements outside actions are not allowed here. The only exception
are variable declarations, which can be placed anywhere in a NPC script. For details, see the
'Writing dialog scripts' chapter.

The 'Global declarations' group contains declarations of global variables only. Currently, there is
only one file in this group; it is the _global.u file. The variables declared in that file are available in
ALL other script files. The file name is preceded by the underscore character to make it appear on
top of the list when you display it in your file manager. This is very important file.

The 'General purpose scripts' group are 'usual' scripts. They have no constrains about the contents;
they may contain almost everything (except actions). Currently, there are no files in this group. As
the game develops, there will be probably much more files of the general purpose group.

The fifth group are trade profiles. They make it possible for the hero to trade with NPCs. See
'Writing Trade Profiles' for more details about this group.

The next group are location scripts. They consist of two predefined callback functions, OnEnter
and OnExit. The OnEnter function is called every time the hero enters the locations, and the
OnExit function is called when they leave the location. You can use the functions from the
DiffXXX group to obtain last visit time and perform some action based on the time difference (for
example: delete some of the location monsters if 7 days have passed).

Item scripts are invoked when items are used. The exact action depends on item category.
Currently, only one item category uses scripts (readable items; they invoke their scripts as they are
read).

Handler is a special script that groups together various callback functions. It has been designed to
be used primarily with tutorials (which usually display a pop up window in response to some user
action, thus a callback is needed), but can be used for other purposes as well. The callbacks
currently implemented are:

• OnNewGameStart – called when a new game starts
• OnChatEnd (MonType) – called when the hero ends a talk with somebody, MonType

specifies NPC type index
• OnEnterLoc (LocWorldX, LocWorldY) – called the hero enters a location,

LocWorldX and LocWorldX specify the world coordinates of the location
• OnKill (MonsterID, PosX, PosY) – called when the hero kills a monster or NPC,

MonsterID specifies monster or NPC ID (that can be obtained by a call to AddMonster)
• OnPickUpItem (ItemType, Param) – called when the hero picks up or equips an

item, ItemType specifies item type; Param is inventory ID of the slot where the item has
been placed, when it's less than 17, the item is currently being equipped

The last group is the OnLoad script. There can be only one OnLoad script in the game and it
appears as the _onload.u file. Its role is to initialize the game; it should load the world file, select a
default location, set hero's attributes, etc.

The OnLoad script contains one important callback function, OnChooseWeaponSkill.

function OnChooseWeaponSkill (SkillID)

The function is called when the player confirms creation of a new character and it is time to equip
him with weapons appropriate for the chosen weapon skill.

Language basics

General information

The U language is NOT case sensitive. You can type its statements in lowercase, UPPERCASE,
camelCase, even in TeEnIeBlOgGiEcAsE, just as you wish to.

Simple commands

There are few commands you can use primarily for debug purposes, for example to print text in the
console window (if it is present, of course). They act much like usual procedures, but they do not
require parentheses for their argument list. You can separate arguments from the command name by
almost any character (usually it is space, though) and you can separate one argument from another
by any non-digit and non-letter character (but usually it is comma character). Just look at the
following examples.

The Print and Println commands

The Print command, as you probably expect, prints text on the screen (i. e. in the console window).

syntax:
Print <text>
Println <text>

These commands only work when console window is present and it exists mainly for debugging
purposes.

The Input command

The Input command allows you to read keyboard input:

Syntax:
Input <variable>

User must hit Enter key to end typing. All entered white-space characters are skipped (i. e. if you
enter several words separated by spaces, only the first word will be actually read into the variable).
This command only works when console window is present and it exists mainly for debugging
purposes.

The System command

The System command allows script to execute system commands. What exactly you can do with
System command, it depends on the operating system you are using.

Syntax:

System <command>

Example:

system "dir"

This example will execute the dir command (listing files in the current directory).
This command exists mainly for debugging purposes.

The Incr and Decr commands

The incr keyword is an abbreviation for 'increment'. It just adds 1 to the specified variable, e. g.:

var my_var = 5
incr my_var

...makes my_var evaluate to 6. The decr command, as you guess, does the opposite.

The Exit command

The exit command ends execution of the script immediately.

Comments

All the characters following the '//' sequence (up to the line-break) are treated as comments (just like
in C++). You can enter anything you want there and it will not affect your program.

There are no block comments in U (unlike C++, where we do have the slash-asterisk and asterisk-
slash sequences). You can only use multiple '//'.

Example:

print "This line will execute."
print "This one too."
//print "But this one will not. It's commented out."
print "And this one will be executed normally..."

Variables

The variables can be declared with the var keyword. There are no variable types in U. You can
only store integer numbers in variables. More specifically, an unsigned 64-bit value is reserved for
each variable. However it is not recommended to use values larger than INT_MAX-1.

A variable declaration looks like this:

var MyVariable 0

or equivalently (and maybe more familiar to programmers):

var MyVariable = 0

Please note that both leading and trailing space is required when using the '=' character here (unlike
C/C++, where the spaces are optional and much unlike Bash programming, where they make a
syntax error!).

The character '0' at the end of the declaration is a value which we assign to the variable immediately
after its creation (i. e. we initialize the variable with the value).

Naming of variables must conform to some rules:

● first character must be an alphabetic character (A-Z)
● the rest of characters must be alphabetic characters or underscore characters ('_')
● underscore as the first character of a name should never be used, it is reserved for internal

use

So, the following names are valid:

var MyVariable1 0
var My_variable 0

...while the following are not:

var 1MyVariable 0 // error!
var _MyVariable 0 // error!

Please note that variable names are NOT case sensitive (unlike the C++, and much unlike the
Linux!).

Depending on scope, we can distinguish three types of variables:

● global variables
● local variables (module scope)
● local variables (block scope)

The first kind of variable is easiest to distinguish, because every global variable is declared in the
_global.u file, which we have already discussed of.

Local variables can be declared either outside or inside a block of code. We will know more details

about it as soon as we talk about functions. At the moment we can only say that all local variables
(both "module" ones and "block" ones) are only "visible" in a file they are declared in.

You can assign a value to a variable at any time:

var a 0
println "Variable declared."
a = 5
println "Variable value changed."

It is not possible to initialize variable to anything but a bare number. However, it is possible to
assign it a value returned from a function. The ValueOf function can be used to obtain a value of
another variable, e.g.:

var a = 1
var b = 0
b = ValueOf (a)

The language basically does not differentiate between various white-space types, so that you can do
assignments and other operations on the same line as initialization if you separate these operations
by spaces:

var dx = 0 dx = ValueOf(rx) incr dx // in C++ we'd just say 'dx =
rx + 1'

This partially compensates the syntax restrictions for variable initialization.

You can use the print and println commands to write variable's value to the output:

var a = 1
println a

Conditionals

The basics of conditional expressions in U

As in almost every programming language, in U you can check conditions too. And as in almost
every programming language, you have the 'if' statement. It works much like its "cousin" from
C/C++, meaning that it can accept complex conditions like:

if (MyVar == 33 && MySecondOne != MyThirdOne)
{
 println "Condition is true."
}

if (MyVar == 33 && !MyOtherVar)
{
 println "This condition is also true."
}

As in the C/C++, variables are implicitly "converted" to Boolean type in logical expressions. More
precisely (as there's actually no Boolean type in the U), all non-zero values are evaluated as 'true'
and zeros are evaluated as 'false'.

The difference between the C/C++ and the U is that you MUST follow the 'if' statement by '{' and
'}' characters, even if there is only one command in the block:

if (cnd)
{
 println "Something"
}

There are no C-like shortcuts like:

if (cnd)
 println "Something" // syntax error in U!

Note that nested constructs with parentheses are too difficult for the parser, so that this snippet, for
instance, will not compile:

if (a && (c || b)) // syntax error
{
 println "Doh."
}

The 'else' block

The else block can be used together with the if statement:

if (cnd)

{
 println "Something"
}
else
{
 println "Something else"
}

We have talked about the rules you must follow when creating an if block. The same rules apply
for the else block.

The else and if statements can be used together to form a more complex language constructs
like:

if (cnd)
{
 println "Something"
}
else if (cnd2)
{
 println "Something else"
}
else
{
 println "Something different"
}

Operators

The operators you can use to construct conditions are very similar to the ones knows from C/C++.
They have the same symbols (with one small exception), the same priority and other features. The
available operators are:

Operator name Symbol Quick example

Equal == var1 == var2

Not equal != var1 != var2

Not ! !var1

And && var1 && var2

Or || var1 || var2

Xor (eXclusive or) ^^ var1 ^^ var2

As you probably know, in C/C++ there's no operator like '^^'. But in U there are no bit-wise
operators (like '&' or '|' in C/C++), so the xor operator has been assigned the '^^' symbol, just to
make it look more like the other logical operators ('&&', '||'). In C/C++ you have the '^' operator,
which does exactly the same.

Loops

Loops are constructs that simplify repetitive tasks greatly in common programming languages,
although in U they are rarely used. Nevertheless, they do exist. The syntax is Basic-like, example:

for i = 0 to 10
{
 println (“something”)
}

There is no way to change step value, so loop counter is always incremented by one.

Additional control over loops is provided by keywords: break and continue. The break
statement exits the loop immediately, while the continue keyword skips all the statements
following it and begins a new iteration. Similar behavior can be observed in languages like C, C++
or Java.

If the variable used by a loop is a global variable or module local variable, the variable name is
hidden (like in C++). Block local variables cannot be hidden, so it's an error to use them as a loop
counter. You can also use a non-existent variable name as a counter, it will be created automatically
in this case.

The range can be specified using variables, but more complex expressions are disallowed:

for i = a to b // OK
for i = a to a + 10 // not OK!

Functions

Function is a set of commands with assigned name and sometimes with a parameter list, returning
some value as it ends its execution.

In U, functions have some differences when compared to popular programming languages like C++
or Pascal. Here they are:

● every function must return a value, but it can return implicitly
● when using an implicit return, a value of 0 is returned
● you must return a constant value or nothing (which equals returning 0), you cannot return a

variable
● only an unsigned integer values can be returned
● only an unsigned integer values can be used as parameters (although some built-in functions

can also have string and float parameter types)
● there are no default values for parameters
● parameter values are always passed by value, there are no references nor pointers
● you can only use a returned value to:

○ assign it to a variable
○ use it in a conditional expression

● you cannot overload functions
● there are no inline functions
● there is only one, default calling convention

Functions in U are similar to C++ in that:

● functions with no parameters are allowed (although you still must include parentheses)
● you can use parameters as if they were local variables (you can change their value too)
● you are not obliged to use function's return value (just like in C++)
● you can recursively call functions (i. e. you can call a MyFunc function from inside of

MyFunc)

Unlike C++ or Pascal, you need not to declare functions. Once you have a definition (i. e. function's
body), you also have the function declared. You do not even have to place the definition on the top
of the file. It can be almost anywhere in the file and it will be "visible" to any call.

Syntax:
function <name> (<parameter_list>)
{
 <commands>
 [<return_statement>]
}

You do not specify function's type nor parameters' type, because you only use one type (unsigned
integer). Instead you use the "function" keyword to declare a function. You must include
parentheses even if you do not have any parameters.

You can place any number of return statements. The compiler will warn you if you do not have one,
but it will not warn when not all control paths would return a value! It just checks whether any
return command exists in the function's body.

Example:

function seven()
{
 return 7
}

The following example shows how to use parameters:

function test (four, nine)
{
 if (four == 4 && nine == 9)
 {
 println "Everything is fine."
 return 1
 }
 else
 {
 println "Something is wrong..."
 return 0
 }
}

You can use the returned value in the following ways:

test (4, 9) // do not use the returned value at all

if (test(4, 9)) // use it in a conditional expression
{
 println "Function succeeded."
}

var a = test (4, 9)

The following example shows an implicit return. If arg is equal to 10, we return a value of 1
explicitly, but if arg is something else, we do not have the return statement at all, which means
that the function returns automatically and the return value is 0:

function Fun (arg)
{
 if (arg == 10)
 {
 println "Arg is ten."
 return 1
 }
 else
 {
 println "Arg is not ten."
 }
}

We can also use “naked” return statement, i. e. without a value:

function Fun (arg)
{
 if (arg == 10)
 {
 println "Arg is ten."
 return
 }

 return 1
}

For a list of predefined functions, see the "Predefined functions" chapter.

Labels

Yes, the infamous 'goto' command is available too. Although in modern programming languages
like C++ it is generally not recommended to use 'goto', in game scripting languages like U it can
prove to be very useful, as the U doesn't have many other control statements (like 'break' or
'continue' in C++).

You declare and use labels as follows:

if (Cnd1)
{
 if (Cnd2)
 }
 goto MyLabel
 }
 println "This line will be skipped if Cnd2 is nonzero."
}

MyLabel:
 println "Here we are!"

You may use 'goto' almost anywhere in code, but there are some restrictions connected with actions,
which we are going to discuss later.

Inheritance

The inheritance mechanism implementation may be incomplete and thus it is not recommended to
use it.

U language allows you to inherit things from other scripts you or somebody else has already
written. There is one important limitation: it can only create flat inheritance hierarchy (script B can
inherit from A and C can inherit from B at the same moment but C won't automatically inherit from
A then).

You indicate that script is derived from another script by adding the extends keyword.

Syntax:
extends <script_file_name>

This syntax may lead to some confusion, suggesting that the whole script file is inherited. This is
only partially true, as only functions and variables are actually inherited. Any other elements
(procedures, actions and so on, also any elements outside function blocks) are ignored.

We will refer to the script given by the script_file_name parameter as to "base script". We will also
refer to the script having the extends keyword as "derived script".

The script file name must not include a path. Base script must reside in the same directory as the
derived script.

Inheriting functions

When a function is called from the derived script, the U interpreter searches the derived scripts and
if it finds a function of the given name, it gets called. If such function is not found, then the base
script is searched and matching function is called (if found).

If you have a function MyFunction in your derived script and it also exists in the base script, you
should precede the MyFunction definition in the derived script by the keyword overridden.
You can call the base MyFunction from the overridden one, using the keyword super.

Note: super may not work correctly in the current version of the engine. Use with care or better
avoid.

Example:

[scriptbase.u]

function MyFunction (arg1, arg2)
{
 println "Base script here!"
}

[derived.u]

extends “scriptbase.u”

overridden function MyFunction (arg1, arg2)
{
 println "Derived script here!"
 super // let the base script do its job too
}

In the above example both texts will be written in the console window, because we have used the
keyword super, making a call to the base function.

Please note that the derived version of function must have the same number of parameters as the
base version. The parameter names may differ.

Inheriting variables

You can refer to variables declared in the base script from the derived script. However, if you
declare a variable named MyVar in the derived script and you had declared a variable of the same
name MyVar in the base script, only the one from the base script will be used whenever you refer
to the MyVar name. Therefore you should always keep in mind the list of variables from the base
script and avoid using the names from the list when declaring new variables in the derived script.

Writing dialog scripts

Dialog designing is based on actions. Every NPC has its own (and only one) dialog script (that is,
an *.u file) containing a set of actions. An action is an atomic unit of dialog. One action can be used
in one or more different dialogs with a certain NPC. Also, a set of actions (and/or their order) used
in a certain dialog can change during play time, if the script writer wishes to.

Actions

Actions are constructions similar to procedures. They are sets of commands with an assigned name.
There are several major differences, though:

● you cannot nest actions like you do with procedures
● there's no way to call actions directly from outside an other action; they can only be called

from the 'option' command (only if user selects the option enumerated by that command); it
can only be placed in an action block one (and only one!) action is always preceded by the
'default' keyword; it marks a default action (the one that starts up the dialog)

● you can (but don't have to) initialize the 'text' property of the current action; its value is
displayed on screen and can be seen by the player as the NPC's talk. You can set this
property more than once per single action; only the last assign counts. If you do not set 'text'
at all, the action's commands shall be normally executed, but in that case you should make
sure that you leave the action properly (by 'end', 'trade', or 'shift' command), as the dialog
options shall not be displayed on screen, even if they have been enumerated

● you can (but don't have to) place one or more 'option' commands in the current action to
give the player a number of choices. If you don't enumerate any dialog option, the dialog
shall end immediately (but action text, if present, shall be displayed).

● you cannot use 'goto' command from inside an action
● you cannot place labels in an action (i. e. you cannot jump into them by 'goto')
● you cannot place procedure definitions ('def_proc') in an action, but you still can call

procedures defined outside

You usually treat an action as a single 'NT-YR' (NPC Talks, You Reply). A single action defines
text displayed on screen (this is the NT), and several possibilities of player's replies (these are the
YRs).

Another (quite rare) possibility to use an action is a scheme referred to as 'MR' (Multi-Reply). As
you can observe, buttons that display player's replies have only limited space for text, so these
replies must be as short as possible. That's not fair! NPC can even talk us to death, and we can only
say a word or two... Let's stop that! So there's a small trick available and it has already been
mentioned; you do not set 'text' property for the action and - voila! - text from the previous action
does not disappear from screen, but you are able to speak again!

Control flow in actions

All statements inside an action are executed as they were inside procedures; so does the option
statement (it adds a new dialog option to a local list; the list is destroyed as we leave the action
block). An assignment of 'text' property works in a similar way. After execution of all action's
statements, we enter the modal loop. Then, the dialog window is handled as every window does -
the control is delegated to the main game engine. By the moment the player chooses some dialog
option, control is returned to the script; we jump into the action selected by player and the scheme
continues.

Here's an example of a short conversation:

default action hello
{
 text = “Hi, stranger.”
 option “Hello.”, hello2
 option “Goodbye”, end
}

action hello2
{
 text = “I'm actually not supposed to talk to you, so you should
go now.”
}

This one starts with action 'hello' (because it is default). The NPC says “Hi, stranger” and the hero
has two possible replies: “Hello.”, which leads to action named 'hello2', and “Goodbye”, which
ends the conversation. If the player selects the button “Hello.”, the action 'hello2' is executed and
another text is displayed. Action 'hello2' has no more dialog options, so only one button can be
selected now – clicking it just ends conversation.

You may change a default action any time, using the SetDefaultAction command:

SetDefaultAction hello2

Since then, 'hello2' is the default action and conversation with this NPC begins from 'hello2'.

Items

An important thing is that the scripting engine gives you an access to the Player's inventory. You
can add items to the inventory or take them from the Player, you can also check if the Player has
specified item in the inventory.

To handle items, you use item definitions. An item definition is:

<item alias> <item name> <quantity> <durability_requirements> <required_flags>

Item alias is a name you give to an item to identify it in the current script file. An alias declared in
one file is not recognized anywhere else (unless you declare the same alias elsewhere). It also does
not lead to any conflict if you declare two aliases with the same name in two different files. Aliases
are fully local beings.

Item name is the name of the item provided in the items.ini file.

Quantity – as you can see, quantity is assigned to every item.

Durability_requirements – how damaged the item is allowed to be for the NPC to accept it. Possible
values are:

• 0 (not important)
• 2 (50%)
• 3 (75%)
• 4 (100%)

With durability_requirements equal to 4, the item must be in a perfect condition, while 3 means that
the item must have at least 75% of its 'hit points'. Usually you use the value 0, meaning that any
condition is accepted.

The durability_requirements value also influences the initial 'hit points' of a newly created items
when an NPC gives an item to the player character.

Required flags – What flag this item needs to have to be accepted. Usually you set this to 0 (not
important). You may, for example, set it to 256, which is flgCrafted flag. Please note that these
flags are NOT the same as item definition flags (described in the 'Item Definitions' chapter) – you
should never confuse these two!

Flag name Flag value Description

flgBSIdentified 1 The item's blessed/cursed status has been revealed.

flgBlessed 2 The item is blessed.

flgCursed 4 The item is cursed.

flgIdentified 8 The item has been identified.

flgBSRandom /
flgAltCorpse

16 flgAltCorpse – the item is a corpse and has an icon
other than the default; this flag is mostly used
internally and probably has little meaning in scripts
flgBSRandom – for internal usage only

flgPoisoned 32 The item is poisoned.

flgActivated 64 The item is a tool and its primary function has been

activated (e.g.: a torch is lit).

flgVirtual 128 Not actually an item (for internal usage only!).

flgCrafted 256 The item has been crafted by player.

An example of item definition:

item "The debt", "gold piece", 200, 0, 0

What do we have here? It's just 200 gold pieces, identified in the script file by the string alias "The
debt". You can now use the definition to check if the Player has at least 200 gold pieces to pay some
debt:

if (HeroHasItem ("The debt"))
{
 DoSomething()
}

...or to check if the Player has ANY gold:

if (HeroHasSomeItem ("The debt"))
{
 DoSomething()
}

You must put item definitions on the top of the file, before all actions that could potentially use
them. Otherwise you will probably get an error message "undefined item" or something like that.

Note: item's material and special data is also matched (by HeroHasItem and HeroHasSomeItem
functions). To disable this, set item's material to 1 (using SetupItemMaterial) or item's data to
DWORD_MAX (using SetupItemData).

Common thing to do with item definitions is to take items from player and to give items to him. For
example, we could inform the Player that he has paid his debt, so we can return his jacket to him:

if (HeroHasItem ("The debt"))
{
 TakeItem (“The debt”)
 GiveItem (“Hero's jacket”)
}

Of course, the “Hero's jacket” string is also an item definition alias.

You can also specify corpses as items, but this is slightly different. As you may have noticed,
corpses are not usual items in the sense that they are not defined in the items.XX.ini file. Therefore,
writing:

item "Goblin's remains", "goblin corpse", 1, 0, 0 // wrong!

...will not work. Instead, you can write:

item "##Goblin's remains", "goblin", 1, 0, 0

Thus, you specify monster's name instead of item's name, and item alias follows two hashes ('#').
Whenever game engine sees item alias beginning with hashes, it assumes that item's name is
actually monster's name and it should 'create' a corpse out of it.

Instead of item name, one may specify its number, following a single hash character ('#'). This is a
zero-based index of the item definition as it appears in the items.XX.ini file. For instance, the
following declaration specifies a short swort, because it's the first entry in the items file:

item "a non-magical sword", "#0", 1, 0, 0

This is very useful when referencing items that do not have a unique name.

Repairs

Some NPCs would repair your damaged items. To display the repair window (i. e. inventory
window in repair mode), you just redirect current action to 'repair', just as you would do with trade
window:

option "Can you repair my weapons?", repair

Repair cost for 1 damage point is the value of item divided by its maximum durability, rounded to
the nearest integer and doubled. For example, a broad sword is normally worth 250 gold pieces, so
when its durability equals 39/40, then total repair cost is 12 gold pieces. Every NPC has exactly the
same way of calculating repair cost (unlike trade prices).

Curing

Some NPCs have medical skills and are able to cure hero's diseases and/or restore their missing
limbs. This is done in the similar fashion as item repairs – as a special dialog option redirection:

option "Can you cure my diseases?", cure

option "Can you restore my limbs?", cure_limbs

Note that cure not only removes all diseases, it also restores Hit Points, as well as it removes
bleeding/poisoned status and fixes broken limbs.

Also note that cure_limbs only applies to limbs that have been non-permanently chopped off. It
doesn't fix broken limbs nor it restores permanently lost limbs.

Butchery and Cooking

Some NPCs have butchery or cooking skills which can be triggered in similar way to repairing or
curing:

option "Will you take care of this flesh?", butchery

option "Can you cook this meat?", cooking

In case of Butchery, the first appropriate corpse from the hero's inventory is used. The hero also
needs some money (5 gold pieces) as a payment. This is done automatically, so you don't have to
implement the payment in the script.

In case of Cooking, the first appropriate piece of raw meat from the hero's inventory is used. The
hero also needs some money (5 gold pieces per piece of meat) as a payment. This is done
automatically as well.

Traveling through locations

Some NPCs would join hero and visit various locations along with him. As they reach a specific
destination, the OnEnterLoc function is called in the NPC script (if it is present, of course). You
might want to use it to provoke some activity, for example the NPC can comment the new place. It
looks like this:

function OnEnterLoc (LocWorldX, LocWorldY)
{
 if (LocWorldX == 15 && LocWorldY == 23)
 {
 NPCUnfollowHero()
 SetDefaultAction "hello2"
 incr Quest17Counter
 NPCSetActivity ("Aruos", "#1", 17) // wander
 NPCStartChat ("Aruos", "#1")
 }

 return 0
}

The callback function has two parameters, LocWorldX and LocWorldY, which identifies the
location. Usually you want to test the parameters against some criteria. It is quite reasonable for
NPC to stop following the hero if they reached their final destination, set new activity type and/or to
start a chat.

Dialog script localization

All script examples in this reference assume that there is only one language defined in the game.
However, the mod creator has a possibility of create quests that work fine with several different
languages. In case of dialog scripts, this is done by writing dialogs in all supported languages at
once. Languages can be separated by '|' character:

default action hello
{
 text = "Witaj, przyjacielu. Co mogę dla ciebie zrobić?|Welcome,
my friend. What can I do for ya?"

option "Ktoś ty?|Who are you?", who
option "Helo│. Spytać o coś można?|Hello. Can I ask you a
question?", question
option "Pohandlujemy?|Let's trade!", trade
option "Potrafisz naprawiać przedmioty?|Can you repair items?",
repair
option "Spadaj?|Get lost!", end
}

In this simple example, we have two languages supported: Polish (first one) and English (second
one). This order is determined by an entry in the \Data\game.ini file, which looks like this:

all_available_langs = "pl|en"

If you have specified two languages in game.ini, then you MUST supply all dialog texts in two
languages. If you forget to do this, the script won't compile. If you don't wish your mod to support
more languages, you must change the above game.ini entry.

Dialog Data

There is a mechanism that enabled the script to process some data received dynamically from the
game engine. The mechanism, referred to as Dialog Data, or Dialog Data Resource, or
DialDataRes, allows you to interact with the randomly generated stuff.

Dialog Data is typically initialized with some data during some kind of random content generation,
for example when generating a location. The script should hook to the Dialog Data as soon as the
data is ready and retrieve it. The stored data is considered extremely volatile and may get cleared in
any moment, so it is important to retrieve it as soon as possible.

Just like in any other element of the U language, there are two data types: numbers and strings.
Each piece of data has a unique ID. Note, though, that the nature of Dialog Data is quite ephemeric,
so that if you need a number with ID=1 and you attempt to obtain it when it's too late, you may get
an exception or silently retrieve some other data, so that one needs to be very careful here.

String data is normally used when setting action text and dialog options (i.e. buttons with choices
for the player). You can use the format '$n', where 'n' is an ID of the string that you want to insert.
An example of such an action:

action a1

{
text = "Do you choose $1 or $2?"

option "$1", choice1
option "$2", choice2

}

Numeric data can be retrieved using the function GetDialDataInt. An example:

AddTwoArenaMonsters (7, 5, 12, 9)
id1 = GetDialDataInt (3)
id2 = GetDialDataInt (4)

As already explained, every set of Dialog Data is available after placing some kind of randomly
generated stuff. In the above example two monsters are generated. The function that generates
them, AddTwoArenaMonsters, adds four Dialog Data values to the storage. First two, with IDs
1 and 2, are string values, while 3 and 4 are integer values. Other functions generating content may
set different Dialog Data values. Every time some function is putting a value into the Dialog Data
storage, it typically clears previous values, if any, so that you cannot rely on their longevity.

In addition to the values set by functions from U functions, there is one case where values are set
elsewhere.
After a partially random location has been generated, four Dialog Data values are set. They are
guaranteed to survive at least until OnPostInit, so that you can safely retrieve them in that
callback. They are:

ID Type Contents

1 number X coordinate of the predefined part of the location

2 number Y coordinate of the predefined part of the location

5 number Rightmost coordinate of the predefined part of the location

6 number Bottommost coordinate of the predefined part of the location

Callback functions

There is a number of predefined function names. If such a function is defined in a script, it may get
called by the engine in certain circumstances. Many tasks cannot be accomplished without
callbacks.

Location callbacks

Callback When Called? Purposes

OnInit Before the location is loaded or
generated.

• RestrictMonsterGenerati
on

• everything else that may
affect random

Callback When Called? Purposes

generation

OnPostInit After the location is loaded or
generated.

• Adding monsters to
partially random
locations

• Setting up monster
inventories

• Setting up guarded cells
• Setting up NPC's spells

OnNewSession After the location is loaded or
generated (this happens after
OnPostInit and OnEnter) plus
every time the game is loaded.

• Adding location effects
• Group setup

OnEnter After the hero enters the
location.

OnExit Before the hero exits the
location.

OnDestroyItem Every time an item is
destroyed. Parameters: X, Y,
Type, Count.

NPC callbacks

Important note: In order to use NPC callbacks, one needs to ensure that the NPC script has been
loaded. Normally it is not unless the hero has already chatted with the NPC. There is a number of
other activities that may cause the script to get loaded and cached, but since this happens totally
'behind the scenes', the script author should not rely on this and load the script manually (using the
NpcLoadScript function, usually in OnNewSession) every time he expects some callback to
be used.

Callback Description

OnInit Called when the NPC script is loaded for the first time. The place
to add spells and non-guaranteed items. In both cases, the NPC
should have the flgLoadScript flag set.

OnKill Called when another NPC is killed. Parameters: MonsterID,
PosX, PosY. All these parameters refer to the dead NPC.

OnDeath Called when the NPC dies. Parameters: X, Y (position where the
NPC died). If any item dropped by the NPC should be
guaranteed, this is the place where they must be added (possibly
using AddItem or AddItemEx).

OnGiveItem Called when the hero gives an item to the NPC. See the chapter
'OnGiveItem' for more info.

Item callbacks

Callback Description

OnRead Called when the hero reads the item. Parameter: Type.

OnGiveItem

This is a callback function used to handle giving items to NPCs. The syntax is:

function OnGiveItem (Type, FlagIdentified, FlagUnique,
FlagBlessed)

The parameters allow the script to decide whether the NPC accepts the item or not and generally
what to do with the item.

Type – item type
FlagIdentified – equal to 1 if the item has been identified, 0 otherwise
FlagUnique – equal to 1 if the item is unique (artifact), 0 otherwise
FlagBlessed – equal to 2 if the item is blessed, 4 if cursed, 0 otherwise

The return value is important – it tells the engine the “decision” of the NPC. Possible values are:

Value Meaning

1 Accepted – item has been accepted by the NPC. If this flag is not set, the item is not
taken from the player's inventory.

2 Remove – item will be removed from the player's inventory

4 Talk – the NPC will start a dialog with the player

8 Identify – the NPC will attempt to identify the item. This requires special variables -
_Identify and _ItemType.

The values in the above table can be combined, e. g. the value of 13 (8+4+1) means that the item is
accepted, the NPC will try to tell something to the player and will also identify the item.

Whenever 8 is returned (most likely combined with other flags), the script is expected to have
declared two special variables: _Identify and _ItemType. Both should be initialized to 0.
When OnGiveItem returns, _ItemType is set to the type of the given item, so that further script
calls are able to access and use it (the value of the Type parameter in OnGiveItem cannot be
assigned to other variable in the script because of the scripting language limitations). _Identify,
on the other hand, is meant to be written by the script rather than read. The script is expected to set

the variable to 1 as soon as the NPC decides that the item will be actually identified (for example,
he made sure that the player character has enough money to pay for the service).

OnSacrificeItem

This will be called every time somebody sacrifices an item on an altar. Normally the callback
function is placed in the _global.u script and there is only one instance of it. The syntax is:

function OnSacrificeItem (LocWorldX, LocWorldY, PosX, PosY, ItemType, ItemCount,
DeityID)

LocWorldX, LocWorldY – coordinates of the location where the altar exists
PosX, PosY – altar's cell position in the location
ItemType – type of the sacrificed item
ItemCount – number of sacrificed items
DeityID – ID of the deity assigned to the altar

If more than one item type is sacrificed at time, the function is called several times in a row with
different types as a parameter.

The main purpose of the callback is to specify conditions of game endings (see the
HeroGrantChampionStatus function).

OnSacrificeRareItem

This is called if somebody tries to sacrifice a rare item – that is, an unique item or an item that is
never random-generated. The purpose is to prevent the player from sacrificing (and thus destroying)
an important item without which completing the game (or a quest) would be impossible or at least
very hard. This 'category' includes artifacts, keys and other special items.

The syntax is:

function OnSacrificeRareItem (LocWorldX, LocWorldY, PosX, PosY, ItemType,
ItemCount, DeityID)

The meaning of the parameters is the same as in the OnSacrificeItem callback.

The return value means:
• 0 – do not accept (the item remains)
• 1 – accept (the item disappears)

Dropping items

NPCs will drop items when killed. The recommended way to have NPCs dropping non-important
items is to use the OnPostInit callback function in a location's script and the
NpcAddInvItem function to set up NPC's inventory:

function OnPostInit()

{
 NpcAddInvItem ("Gandalf", "#1", "gold piece", 100)
}

Please note, however, that NPC's inventory is available during the game, so that the items from it
may be stolen, destroyed or lost in any other way. Thus you should consider the inventory as
potential, non-guaranteed drop. If you need the NPC to drop a guaranteed item, use the OnDeath
function instead:

function OnDeath (x, y)
{
 AddItemEx ("", "gold piece", 10, x, y)
}

The downside of the OnDeath approach is, obviously, that the item will not be visible in the
monster's inventory until the NPC dies. Some players may object on this, others don't like it when a
crucial or unique or very valuable item gets lost. The choice is yours.

Nameless creatures (monsters and common NPCs) can have items added to their inventories as
well. You can use the function
CreatureAddMiscItem for that purpose.

Writing trade profiles

Some NPCs can trade with the hero. If you want NPC to trade, you must do three things:

● create (in dialog script for the NPC) an action leading to 'trade'
● create a trade profile for the NPC
● create a connection between the dialog script and the trade profile

The first thing is easy:

action Example
{
 text = "Do you want to trade with me?"
 option "Yeah, sure.", trade
 option "Not now.", end
}

You do not define the 'trade' action. Even more: you can't do it, because 'trade' is a reserved word. It
doesn't actually name an action. It closes the dialog window and opens the trade window. If the
trade is completed, you do not return to the dialog window any more until you [T]alk to the NPC
again - please consider this when constructing a dialog!

The second important thing to do is the trade profile itself. It must be placed in a separate *.u file,
but you can reuse one trade profile for many different NPCs. It enables you to create several
common profiles, e. g. a standard village shopkeeper profile, a city chemist profile, a merchants'
guild member profile, a lone traveling merchant profile, etc.

A typical trade profile consists of only one function call. The function is
DefineTradeEntities. It takes one string parameter, which specifies the details of trader's
offer. The string is actually a list of tags. Possible tag values are listed in a table in the 'Settlements'
chapter, under the 'treasure' keyword. Additionally you can use the 'item' tag, which specifies a
particular item rather than the whole category. Here is an example of a complete trade profile:

DefineTradeEntities ("food,item:empty bottle,item:empty half-litre,item:bottle
of liquor,item:strange liquor,item:bottle of water")

This line defines a profile for a shopkeeper buying and selling food stuff. The 'food' category is
specified collectively, while all additional items (drinks) are listed using the 'item' tag.

To assign a trade profile to the NPC, do something like this (in NPC's dialog script!):

LoadTradeProfile (“vlg-blacksmith.u” 2.0, 0.5, 1, 100, 5000)

All functions used above are explained further in this document.

Writing location scripts

As already explained, the location scripts typically contain at least two functions, OnEnter and
OnExit. They do not have any standard purpose. You can leave them empty if you want, but you
should not attempt to create a location script without one of these functions inside. The location
script must be placed in the /Data/Scripts/Locations directory (note that this is NOT the same
directory as /Data/Locations!) and must have a proper file name. The file name is determined by
location file name. For example if the location file is village.map, then the location script should be
named village.u. You are not obliged to create the script for every location you have.

Here is an example of a location script for a small village. There is a couple of empty callbacks
here. More interesting things happen in the OnPostInit function, which is called only once every
per game – there we set up NPC spells and items, as well as guarded cells. There is also the
OnNewSession callback. This one is called every time you load a saved game and additionally
when you start a new game. This callback can be used to set up groups:

function OnInit()
{
}

function OnPostInit()
{

NpcAddSpell ("Abilidus", "#1", "Holy Bolt", 30)
NpcAddSpell ("Abilidus", "#1", "Shield", 30)
NpcAddSpell ("Abilidus", "#1", "Magic Bolt", 30)

NpcAddGuardedCell ("eluuny", "Asrigam", "#1", 11, 5)
NpcAddGuardedCell ("eluuny", "Elumor", "#1", 29, 19)
NpcAddGuardedCell ("eluuny", "Elidral", "#1", 38, 17)

var count = 0
if (Chance (4, 5))
{

count = Rnd (10, 40)
NpcAddInvItem ("Abilidus", "#1", "gold piece", count)

}
if (Chance (4, 5))
{

count = Rnd (1, 3)
NpcAddInvItem ("Abilidus", "#1", "potion of focus",

count)
}
if (Chance (3, 5))
{

count = Rnd (1, 3)
NpcAddInvItem ("Abilidus", "#1", "potion of healing",

count)
}
if (Chance (1, 350))

{
NpcAddInvItem ("Abilidus", "#1", "Spellbook of Holy

Bolt", 1)
}

}

function OnEnter()
{
}

function OnExit()
{
}

function OnNewSession()
{

AddGroup ("townspeople_eluuny")

NpcSetGroup ("eluuny", "Aruos", "#1", "townspeople_eluuny")
NpcSetGroup ("eluuny", "Abilidus", "#1", "townspeople_eluuny")
NpcSetGroup ("eluuny", "Asrigam", "#1", "townspeople_eluuny")
NpcSetGroup ("eluuny", "Elidral", "#1", "townspeople_eluuny")
NpcSetGroup ("eluuny", "Elumor", "#1", "townspeople_eluuny")
NpcSetGroup ("eluuny", "Yveira", "#1", "townspeople_eluuny")

}

alarm SelfDefence
{

GroupMemberAttacked "townspeople_eluuny", attack
}

An important feature of location scripts is the ability to set up alarms. Alarms can be raised when
certain conditions are met – player performs a particular action and the game responds with a
predefined reaction. Currently, only one type of alarm is supported: when a member of a previously
defined group is attacked, the other members will try to kill the attacker. You can observe this in the
above script example.

Writing item scripts

The item script is invoked when the player performs some action on an item. For instance, when the
player reads a book, the OnRead function is called in the script (currently it is the only function
supported in the item script). The script file must be present in the Data/Scripts/Items directory. If it
does not exist, no further action is performed by the game engine. Example script contents:

function OnRead (Type)
{

if (Type == 181)
{

ReportRead = 1
MsgBox ("STR_STORY_REPORT")

}
else if (Type == 226)
{

TextBox ("STR_DIARY")
}
else
{

return 1
}

 return 0
}

A typical action is to present a message to the player. MsgBox is suitable for short messages, while
TextBox contains scroll bars and thus is able to display a longer piece of texts.

It is expected that you return 0 if the item of the given type is readable. Any other return value (e.g.
1) results in a default message box saying that there was nothing interesting to read (or something
similar).

Starting item sets

At character creation, player is able to choose among several item sets that the character will have
in their inventory at the beginning of the game. The sets can be defined in the scripts. Two scripts
are involved here: the OnLoad script and the global declarations script (_global.u).

The first step (in the global declarations file) is to define the item sets. They look just like good old
item definitions that can be found in most of dialog scripts. The only difference is that you cannot
freely choose their names. They must have the form of “SetX_ItemY”, where X is a number of set
(from 1 up to the number of sets defined) and Y is an index of item in the set (from 1 up to 3).

item "Set1_Item1", "short sword", 1, 0, 0
item "Set1_Item2", "gold piece, 100, 0, 0
item "Set1_Item3", "potion of healing", 3, 0, 0
item "Set2_Item1", "long knife", 1, 0, 0
item "Set2_Item2", "arrow", 100, 0, 0
item "Set2_Item3", "potion of healing", 3, 0, 0

Having the sets defined, you now need to handle them in the OnLoad script. You can declare a
function named OnChooseItemSet that is called just after the character has been created by the
player. Its only argument contains an index of the current item set:

function OnChooseItemSet (ChosenItemSet)
{
 if (ChosenItemSet == 1)
 {
 AddInvItemByAlias ("Set1_Item1")
 AddInvItemByAlias ("Set1_Item2")
 AddInvItemByAlias ("Set1_Item3")

 }
 else if (ChosenItemSet == 2)
 {
 AddInvItemByAlias ("Set2_Item1")
 AddInvItemByAlias ("Set2_Item2")
 AddInvItemByAlias ("Set2_Item3")
 }
}

In this example the player chooses from two item sets.

Starting equipment is another story. It depends mainly on the chosen weapon skill. For example if
the player chooses swords, he will get one, but if they choose staves, they will be equipped with a
wand or staff (and some “magical” clothes, most likely). There's another callback function in the
OnLoad script for that purpose:

function OnChooseWeaponSkill (SkillID)
{
 if (SkillID == 1) // swords
 {

// equip a sword
 }
 else if (SkillID == 2)
 // ...etc., etc...
}

Functions

ActivateSpecial function

Activates a special object at specified position.

Script types:
all

Syntax:
ActivateSpecial (loc_uid, x, y)

Description:
Activates special object at (x, y) in location loc_uid. See also DeactivateSpecial.

AddCompanion function

Adds a monster or NPC to accompany the hero.

Script types:
all

Syntax:
AddCompanion (npc_or_monster_name, npc_identity)

Description:
The parameter npc_or_monster_name is a name from monster.ini. The second parameter can
be omitted for monsters. For NPCs that do not have more than one identity (which is true for most
cases), specify “#1” as npc_identity.

AddDragon function

Adds a dragon to the specified location.

Script types:
all

Syntax:
AddDragon (loc_uid, dragon_name, x, y)

Description:
The loc_uid parameter is an UID of a location in which the dragon is going to be added. Position
is given by x and y parameters.
Note that this is currently the only way to add dragon to the game, as you cannot add dragons in the
Location Editor (unlike other monsters).

AddGroup function

Adds a new group to the game.

Script types:
all

Syntax:
AddGroup (group_name)

AddInvItem function

Adds an item to hero's inventory.

Script types:
all

Syntax:
AddInvItem (item_name, count)

Description:
Adds items to hero's backpack. The items are never put in the current equipment (even if there's no
room in the backpack and there are some equipment slots free), so you can specify count.

If there are no free slots in the backpack, an exception is thrown (error message appears and the
game exits).

AddItem function

Adds an item into specified location (the item is dropped on the ground).

Script types:
all

Syntax:
AddItem (loc_uid, item_name, x, y)

Description:
The new item count equals 1. The loc_uid parameter can be an empty string; in that case the item
is added in the current location.

AddItemEx function

Adds an item into specified location (the item is dropped on the ground). This variant allows to
specify the count.

Script types:
all

Syntax:
AddItemEx (loc_uid, item_name, count, x, y)

Description:
The loc_uid parameter can be an empty string; in that case the item is added in the current
location.

AddInvItemByAlias function

Adds an item defined by the item command to hero's inventory.

Script types:
all

Syntax:
AddInvItemByAlias (item_alias)

Description:
This function requires an item definition given by the item command. It makes it possible to add a
set of items chosen during the character creation, but can also have other uses.

If there are no free slots in the backpack, an exception is thrown (error message appears and the
game exits).

Example:

item “my sword”, “short sword”, 1, 0, 0

AddItemByAlias (“my sword”)

AddInvItemEx function

Adds an item to hero's inventory.

Script types:
all

Syntax:
AddInvItemEx (item_name, count, flags, data, material)

Description:
This functions behaves much like AddInvItem, but allows extra parameters:

flags – item flags, explained below
data – additional data, explained below
material – from what the item has been made (iron, mithril etc.). Available materials are listed
in Data/mat.XX.ini

Item type Purpose of data

Spell books &
scrolls

designates spell index from Data/spells.XX.ini

Mould created item type

Other not used

Item flags are:

Value Flag name Description

1 flgBSIdentified The blessed/cursed state has been revealed to player.

2 flgBlessed The item is blessed (better than normal).

4 flgCursed The item is cursed (worse than normal).

8 flgIdentified The item is identified (all its special powers and attributes have been
revealed to player, except blessed cursed state).

16 flgBSRandom The blessed/cursed state of the item is determined randomly.

32 flgPoisoned The item is poisoned.

64 flgActivated The item has its primary function activated (e. g. a torch is lit)

128 flgVirtual The item does not exist (do not use explicitly!)

Some of these flags can be combined. You cannot use flgBSRandom along with flgBlessed
or flgCursed. An item cannot be blessed or cursed at time (i. e. you cannot combine
flgBlessed and flgCursed). All other combinations are allowed.

Example:

AddInvItemEx (“short sword”, 1, 0, 0)

AddLocLightEffect function

Sets up a special lighting effect in the specified location.

Script types:
all

Syntax:
AddLocLightEffect (alpha, r, g, b)

Description:
The color is made using four components (alpha, R, G, B). The alpha component specifies level of
opacity and should not be too low. All of the components should be in range 0-255.

The function should be called in OnNewSession.

AddLocMsgEffect function

Sets up a special message in the specified location. It is emitted with a specified (random) interval
as a log message.

Script types:
all

Syntax:
AddLocMsgEffect (loc_uid, time, interval, chance, time_flags,
str_tag)

Description:
The effect is added to location loc_uid. Time must be equal to time (given in seconds) and divisible
by interval. Chance determines probability of the event (the higher the value, the less probable the
event). String with the tag str_tag is used. For a list of possible values of time_flags, see
AddLocSoundEffect.

AddLocSoundEffect function

Sets up a special sound effect in the specified location. It is emitted with a specified (random)
interval as a log message.

Script types:
all

Syntax:
AddLocSoundEffect (loc_uid, time, interval, chance, time_flags,
str_tag)

Description:
The effect is added to location loc_uid. Time must be equal to time (given in seconds) and divisible
by interval. Chance determines probability of the event (the higher the value, the less probable the
event). String with the tag str_tag is used.

time_flags:
1 - day only
2 - night only
3 - night and day

AddMonster function

Adds a new monster.

Script types:
all

Syntax:
AddMonster (loc_uid, mon_name, x, y)

Description:
Adds a new monster to location loc_uid and places it at (x, y). The added monster will never leave
the specified location (does not follow the hero when they go through a staircase or other portal
type).
Returns ID of the added monster or -1 if the location did not exist. The returned ID can be
considered as unique (i. e. you can later use it for comparisons, for example to check whether the
monster has been killed).

AddMonsterToGroup function

Adds a new monster and assigns it to a group.

Script types:
all

Syntax:
AddMonsterToGroup (loc_uid, mon_name, x, y, grp_name)

Description:
Adds a new monster to location loc_uid, places it at (x, y) and assigns it to the group grp_name.

AddObject function

Adds a terrain object into the specified location.

Script types:
all

Syntax:
AddObject (loc_uid, obj_type, x, y)

Description:
Adds the object of type obj_type to location loc_uid and places it at (x, y).

obj_type – object type (number) from objects.XX.ini.

AddTwoArenaMonsters function

Adds two new monsters that will fight each other on an arena.

Script types:
all

Syntax:
AddTwoArenaMonsters (x1, y1, x2, y2)

Description:
Adds two new monsters to location loc_uid and places them, respectively, at (x1, y1) and at
(x2, y2).
The function sets the following dialog data:
1 – monster 1 name (string)
2 – monster 2 name (string)
3 – monster 1 ID (number)
4 – monster 2 ID (number)
The script can refer to the string data using “$1” and “$2”. Number data can be accessed using the
GetDialDataInt function.

AnyAliveMonsters function

Checks whether there are any hostile monsters left in the specified location. Dead monsters do not
count.

Script types:
all

Syntax:

AnyAliveMonsters (loc_uid)

Description:
loc_uid is the UID of the visited location you want to examine. The functions returns nonzero
(true) if the location has never been visited by hero, even if the location contains no alive monsters.

Battle function

Starts a battle between two groups of monsters/NPCs.

Script types:
all

Syntax:
Battle (group_1_name, group_2_name, battle_name)

Description:
The battle_name parameter is used since then to identify the battle event and you may refer to
this name whenever you need to refer to some battle (e. g. to retrieve battle results).

BeginQuest function

Adds a new quest log entry.

Script types:
all

Syntax:
BeginQuest (quest_id, npc_name, loc_uid, desc_tag)

Description:
The quest_id can be anything you want, as long as it is unique. Be careful when calling the
matching EndQuest – it should use exactly the same quest_id.
The npc_name parameter should be the name of the NPC that charged hero with the quest.
The loc_uid parameter should be the UID of the location where the NPC is or where they can be
met when the quest is about to be completed.
The desc_tag parameter must appear in the string resource file and identifies a string containing
the quest's brief description.

See also:
EndQuest

Chance function

Returns a non-zero number with a specified probability.

Script types:
all

Syntax:
Chance (min, max)

Description:
There is a probability of min/max that the function will return 1. Otherwise it returns 0. The
function will also return 0 in each one of the following cases:

• if min is greater than max
• if min is negative
• if max is negative.

CreateDungeonSite function

Script types:
The OnLoad Script

Syntax:
CreateDungeonSite (size_x, size_y, num_levels, loc_file_name,
enter_x, enter_y)

Description:
Creates a site of random dungeons. The site consists of several levels (the number is given by
num_levels). Each level is size_x cells wide and size_y cells high. The entrance to the
dungeon is placed in the location given by name loc_file_name (must contain .map extension),
at coordinates enter_x, enter_y.

The dungeons are randomly generated every time the hero enters them. It means that only one
dungeon level at time is actually remembered. If the hero leaves one random dungeon level and
travels to another one, the previous one is lost forever, along with its items left behind, monsters
etc.

The dungeon site (as you already know, actually it is just one location) is placed at first "free"
position in the current world. "Free" means that at the position size_x * size_y cells have
undefined default terrain type and are not assigned a location loaded from file. If the current world
has not enough "free" cells or all the "free" cells are spread through the world, the world is resized
to fit our new dungeon location with specified size.

You must call CreateDungeonSite AFTER you have called SetStartLoc. Otherwise the
game will crash. You should call the CreateDungeonSite function only in the OnLoad script.

CreatureAddMiscItem function

Adds an item to all matching creatures' inventory.

Script types:
all

Syntax:
CreatureAddMiscItem (loc_uid, mon_name, item_name, chance, flags)

Description:
The function is used to add inventory items for all monsters or NPCs in the location.
The function will affect all matching creatures in the location, unless the chance is too small. The
chance that a creature will be ignored is calculated as: chance/100.
The flags are used for creating the item.
The loc_uid parameter specifies the location where the creature is to be found. It can be an empty
string, which means current location.

CreatureIsAlive function

Returns nonzero if the specified creature is alive.

Script types:
all

Syntax:
CreatureIsAlive (creature_id)

Description:
This function is location-unsafe (if you use it, you must ensure that the creature exists in the current
location).

CreatureSetAttitude function

Sets attitude of a living creature.

Script types:
all

Syntax:
CreatureSetAttitude (loc_uid, x, y, attitude)

Description:
This is commonly used in dialog scripts to make a creature attack the player or to calm down.
Possible attitude values are: 0 – neutral, 1 – friendly, 2 – hostile.
The loc_uid parameter specifies the location where the creature is to be found. It can be an empty
string, which means current location.

DeactivateSpecial function

Deactivates a special object at specified position.

Script types:
all

Syntax:
DeactivateSpecial (loc_uid, x, y)

Description:
Deactivates special object at (x, y) in location loc_uid. See also ActivateSpecial.

DefineTradeEntities function

Defines several random entites for NPC's trade window.

Script types:
Trade profiles

Syntax:
DefineTradeEntities (entities)

Description:
The functions allows more flexible setup of trade items. For more information, see 'Writing trade
profiles'.

DelayedMsgBox function

Makes a message box pop up after the current dialog is finished.

Script types:
NPC scripts

Syntax:
DelayedMsgBox (msg_tag)

Description:
If you use the MsgBox function in the NPC script, it will appear on top of the dialog window,
which is not quite what is usually desired. Thus the DelayedMsgBox has been introduced. It
does not pop up until the dialog window has been closed.
The msg_tag parameter denotes string identifier (the string must be present in the strings.XX.ini
file).
Also see DelayedMsgBox for a message box that appears after the NPC dialog has been finished.

See also: MsgBox, TextBox

DeleteAllItems function

Deletes all items at the specified position in the specified location.

Script types:
all

Syntax:
DeleteAllItems (loc_uid, x, y)

Description:
All items lying on the ground at (x, y) are removed.

DeleteAllMonsters function

Deletes all monsters in the specified location.

Script types:
all

Syntax:
DeleteAllMonsters (loc_uid)

Description:
Monsters are deleted, not killed (no corpses remain!).

DeleteItem function

Deletes a single item at the specified position in the specified location.

Script types:
all

Syntax:
DeleteItem (loc_uid, item_name, x, y)

Description:
Only an item with a matching name and lying on the ground at (x, y) is removed.

DeleteMonster function

Deletes a monster in the current location.

Script types:
all

Syntax:
DeleteMonster (id)

Description:
Only a monster with a matching ID gets deleted. The ID is usually obtained from dialog data (see
the appropriate chapter for more information).

DeleteObject function

Deletes a terrain object at the specified position in the specified location.

Script types:
all

Syntax:
DeleteObject (loc_uid, x, y)

Description:
Only the object at (x, y) is removed, terrain tile remains the same.

DiffDays function

Returns the difference (in days) between the current time and last visit time for the current location.

Script types:
all

Syntax:
DiffDays()

Description:
Returns 0 on error (when last visit time is earlier than the current time). The maximum value that
can be returned is 86400 (about 240 years). If the actual difference is more than maximum, the
maximum value is returned.

DiffHours function

Returns the difference (in hours) between the current time and last visit time for the current
location.

Script types:
all

Syntax:
DiffHours()

Description:
Returns 0 on error (when last visit time is earlier than the current time). The maximum value that
can be returned is 1036800 (about 240 years). If the actual difference is more than maximum, the
maximum value is returned.

DiffMonths function

Returns the difference (in months) between the current time and last visit time for the current
location.

Script types:
all

Syntax:
DiffMonths()

Description:
Returns 0 on error (when last visit time is earlier than the current time). The maximum value that
can be returned is 2880 (about 240 years). If the actual difference is more than maximum, the

maximum value is returned.

DiffSeconds function

Returns the difference (in seconds) between the current time and last visit time for the current
location.

Script types:
all

Syntax:
DiffSeconds()

Description:
Returns 0 on error (when last visit time is earlier than the current time). The maximum value that
can be returned is 3732480000 (about 240 years). If the actual difference is more than maximum,
the maximum value is returned.

DiffYears function

Returns the difference (in years) between the current time and last visit time for the current location.

Script types:
all

Syntax:
DiffYears()

Description:
Returns 0 on error (when last visit time is earlier than the current time). The maximum value that
can be returned is 240. If the actual difference is more than maximum, the maximum value is
returned.

EndQuest function

Marks the specified quest log entry as 'completed'.

Script types:
all

Syntax:
EndQuest (quest_id)

Description:
The quest_id must identify a quest log entry previously added by an appropriate BeginQuest
call.

See also:
BeginQuest

EquipAmmo function

Equips hero with specified type of ammo.

Script types:
all

Syntax:
EquipAmmo (item_name, item_count)

Description:
This function works much like EquipItem, but it includes an additional parameter,
item_count.

EquipAmmoBS function

Equips hero with specified type of ammo, allowing to specify blessed/cursed state for the ammo.

Script types:
all

Syntax:
EquipAmmoBS (item_name, item_count, flags)

Description:
For possible flags values, see AddInvItemEx.

EquipItem function

Equips hero with specified item

Script types:
all

Syntax:
EquipItem (item_name)

Description:
This function creates a new item and places it in the hero's current equipment. For example:

EquipItem (“short sword”)

...Makes the hero start with a short sword in his hand. If we add another call with a “helm”
parameter, our hero receives a helm additionally. Of course it is placed on his head, not in his
hands. As you can see, the proper part of equipment is matched automatically. If nothing matches
the specified item, an exception is thrown (error message appears and the game exits).

If the item cannot be equipped for some reason (for example, the item is a short sword and the hero
has currently his right arm chopped off), the item will be added to the inventory. In turn, if the item
cannot be placed in the inventory, it will be dropped on the ground under hero's feet.

The function should not be used to add ammo (like arrows, belts etc.), because it doesn't allow to
specify item count. In this case use EquipAmmo instead.

EquipItemBS function

Equips hero with specified type of item, allowing to specify blessed/cursed state for the item.

Script types:
all

Syntax:
EquipItemBS (item_name, flags)

Description:
For possible flags values, see AddInvItemEx.

GiveItem function

Adds specified item to hero's inventory.

Script types:
all

Syntax:
GiveItem (item_alias)

Description:
The item with the specified alias must be declared first. If hero cannot carry the specified item for
whatever reason (e. g. the item is too heavy or there is no more room in the inventory), the item is
dropped on the ground.

HasGroupWonBattle function

Returns nonzero if the specified group has won the specified battle. If the battle hasn't been finished
yet, zero is returned.

Script types:
all

Syntax:
HasGroupWonBattle (group_name, battle_name)

Description:
This function is location-unsafe (if you use it, you must ensure that the location of the battle is the
current location).

HasHeroEquippedItem function

Checks whether hero has specified item in the current equipment.

Script types:
all

Syntax:
HasHeroEquippedItem (item_name)

Description:
Note that this function wants item name, not alias – only raw item names from items.xx.ini are
accepted.

HasHeroItem function

Checks whether hero has specified item.

Script types:
all

Syntax:
HasHeroItem (item_alias)

Description:
Checks whether hero has specified item. Quantity does matter (i. e. must be equal or greater than
the quantity specified in definition of item_alias).

HasHeroSomeItem function

Checks whether hero has specified item.

Script types:
all

Syntax:
HasHeroSomeItem (item_alias)

Description:
Checks whether hero has specified item. Quantity does NOT matter (i. e. hero must have at least
one item, even if specified item alias defines more than one item).

HeroGainXP function

Increases Hero's experience points by specified number.

Script types:
all

Syntax:
HeroGainXP (points)

Description:
none

HeroGetAppearance function

Retrieves hero's appearance attribute.

Script types:
all

Syntax:
HeroGetAppearance()

Description:
none

HeroGetDeityStatus function

Retrieves hero's current relations with the specified deity.

Script types:
all

Syntax:
HeroGetDeityStatus (deity_id)

Description:
The function returns a number. The bigger it is, the better relations with the deity hero has.
The deity_id parameter can be either 324 (Locenax) or 325 (Erysopixyr). Any other value
causes the function to return 0.
Important note: if the hero is not aligned with the specified deity, the function will always return 0!

HeroGetDexterity function

Retrieves hero's dexterity attribute.

Script types:
all

Syntax:
HeroGetDexterity()

Description:
none

HeroGetIntelligence function

Retrieves hero's intelligence attribute.

Script types:
all

Syntax:
HeroGetIntelligence()

Description:
none

HeroGetSkillLevel function

Retrieves hero's skill level.

Script types:
all

Syntax:
HeroGetSkillLevel (skill_name, level_count)

Description:
For more details about skill_name see HeroLearnSkill.

HeroGetStrength function

Retrieves hero's strength attribute.

Script types:
all

Syntax:
HeroGetStrength()

Description:
none

HeroGrantChampionStatus function

Grants the hero the status of a champion (of the specified deity).

Script types:
all

Syntax:
HeroGrantChampionStatus (deity_id)

Description:
The deity_id parameter can be either 324 (Locenax) or 325 (Erysopixyr).

HeroIsAligned function

Checks if the hero is aligned with the current NPC.

Script types:
NPC scripts

Syntax:
HeroIsAligned()

Description:
none

HeroIsAnyLimbMissing function

Returns 1 if any of hero's limbs (an arm or leg) is missing.

Script types:
all

Syntax:
HeroIsAnyLimbMissing()

Description:
Ignores permanently lost limbs (returns 0 in that case). Broken limbs do not count as missing (0
returned as well).
This function is intended to be used together with the cure_limb special redirection.

HeroGetVitality function

Retrieves hero's vitality attribute.

Script types:
all

Syntax:
HeroGetVitality()

Description:
none

HeroLearnRecipe function

Makes hero learn a recipe for making the specified item.

Script types:
all

Syntax:
HeroLearnRecipe (item_name)

HeroLearnSkill function

Makes hero learn a new skill or advance its level.

Script types:
all

Syntax:
HeroLearnSkill (skill_name, level_count)

Description:
skill_name is a name stored in Data/strings.XX.txt under identifier like
STR_OTHER_SKILL_xxx.
If hero did not have specified skill before, they learn it at level level_count (usually this
parameter is equal to 1). Otherwise, they advance the skill level by level_count. The
minimum skill level is 1 and maximum is 100. If skill level is already 100, the function has no
effect. If level_count plus current skill level exceeds 100, the skill level is advanced to 100.

IdentifyItemType function

Identifies all items of the specified type.

Script types:
all

Syntax:
IdentifyItemType (item_name)

Description:
This function makes sense only when used with items that needs identifying for the whole type, like
magical scrolls, spellbooks or plants. It reveals the true name (and purpose, most of the times) of an

item type, but not blessed/cursed state of the concrete item.

GetDialDataInt function

Retrieves specified numeric dialog data item.

Script types:
all

Syntax:
GetDialDataInt (id)

Description:
See the chapter about dialog data for more information.

IsBattleEnded function

Returns nonzero if the specified battle has been ended (all monsters from one of the fighting groups
had perished).

Script types:
all

Syntax:
IsBattleEnded (battle_name)

Description:
This function is location-unsafe (if you use it, you must ensure that the location of the battle is the
current location).

IsLocFirstVisit function

Returns nonzero if the specified location has not been visited by the hero (until now).

Script types:
all

Syntax:
IsLocFirstVisit (loc_uid)

Description:
None.

IsPlayerWoman function

Checks hero's gender.

Script types:
all

Syntax:
IsPlayerWoman()

Description:
Returns 0 for male or nonzero for female. The gender is determined by the player at the game start-
up.

LoadTradeProfile function

Loads specified trade profile, assigns it to current NPC and sets up common NPC's trading
parameters.

Script types:
NPC scripts

Syntax:
LoadTradeProfile (sell_mult, buy_mult, trade_skill, min_cash,
max_cash)

sell_mult - Sell multiplier (e. g. 2.0)
buy_mult - Buy multiplier (e. g. 0.5)
trade_skill - Trade skill (e. g. 1)
min_cash - Minimum of cash (e. g. 100)
max_cash - Maximum of cash (e. g. 5000)

If you buy an item, its value is multiplied by parameter 1., giving the price (an amount of money
you pay to the merchant). It should be greater than or equal to 1, but in some rare circumstances it
can be less than 1.

If you sell an item, its value is multiplied by parameter 2., giving the price (an amount of money
you receive for the item). It should be less than 1, giving the merchant an opportunity to earn some
money for his work.

The parameter 3. determines how hard it would be to negotiate prices with the merchant. A trade
skill of 1 is the lowest possible value and means that the NPC doesn't know a thing about how to
trade. He would probably accept any crap for any sum of money you propose. But it is very unusual
to encounter a merchant like this; you will much more often deal with experienced traders (trade
skill up to 100), who will rather take the last shirt from you than allow anybody to cheat them for a
single piece of gold.

The parameters 4 and 5 determine how much money will NPC own every time you visit him. Note
that the values are not absolute; if you sell the NPC a very precious artifact, he may have much
more than the limit until some time has passed and he has had an opportunity to spend the
money :-). And if he pays you all the money he has got, he will have 0 gold pieces (even if the
minimum is higher) until you revisit him after some time.

LockDoor function

Locks specified door.

Script types:
all

Syntax:
LockDoor (uid, x, y)

Description:

uid is a UID of a location containing the door.
If the door under (x, y) coordinates is not closed, the function makes it closed. If the object under
specified coordinates is inactive, or is not a door, or the specified door is already locked, the
function has no effect.
Note that this function does not check for a key, so that the door will become locked even if no key
has been assigned to the door. Under such circumstances, the door will be inaccessible.

MsgBox function

Displays a message in a modal window.

Script types:
all

Syntax:
MsgBox (msg_tag)

Description:
The msg_tag parameter denotes string identifier (the string must be present in the strings.XX.ini
file).
Also see DelayedMsgBox for a message box that appears after the NPC dialog has been finished.

See also: DelayedMsgBox, TextBox

MsgLog function

Displays a new message in the message log.

Script types:
all

Syntax:
MsgLog (msg_text, msg_importance)

Description:
The msg_importance parameter can be one of the following values:
0 – default (let the fate decide ;-))
1 – background information (sounds, special location texts etc.)
2 – do not use, reserved for internal purposes
3 – object information
4 – information (white text, green square)
5 – important message (yellow text, red square)
6 – critical message (red text, red square)

The default (normal) level is 4.

For an example, see the Writing location scripts chapter.

Now function

Returns current game time in hours.

Script types:
all

Syntax:
Now()

Description:
Can be used to obtain timestamps of certain events.

See also:
TimestampDiff

NpcActivate function

Activates specified NPC.

Script types:
all

Syntax:
NpcActivate (loc_uid, npc_name, npc_identity)

Description:
NpcActivate activates specified NPC identity. Each NPC can have multiple identities (entries
in Data\monsters.XX.ini). They may differ slightly (for example, have different pictures), but
share the same name. Identity name is specified in the monsters.XX.ini file as description
parameter and usually equals '#1'. If you want to add more identities of the same NPC, you usually
would name them '#2', '#3' and so on. For more details, please refer the description of
monsters.XX.ini file.
NpcDeactivate does just the opposite.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcAddEnemy function

Adds specified NPC to the other NPC's enemy list.

Script types:
all

Syntax:
NpcAddEnemy (loc_uid, npc_name, npc_identity, enemy_name,
enemy_identity)

Description:

For more info about identities, see ActivateNpc.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcAddGuardedCell function

Makes specified NPC guard a cell.

Script types:
all

Syntax:
NpcAddGuardedCell (loc_uid, npc_name, npc_identity, x, y)

Description:
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
To guard a bigger area, you must call this function multiple times. Loops may be useful here (even
nested loops).

NpcAddInvItem function

Adds an item to NPC's inventory.

Script types:
all

Syntax:
NpcAddInvItem (npc_name, npc_identity, item_name, item_count)

Description:
The player can retrieve the item after killing the NPC. The item_name parameter refers to the
name in the items.XX.ini file.
Note that neither npc_name nor npc_identity can be empty (as opposed to most of other
NPC functions).
For more info about identities, see ActivateNpc.

NpcAddSpell function

Enables this NPC to cast the spell.

Script types:
all

Syntax:
NpcAddSpell (npc_name, npc_identity, spell_name, spell_level)

Description:
Enables this NPC to cast the spell at specified level. Name of the spell, given as spell_name
parameter, comes from the spells.XX.ini file. Spell level must be 1-100 and designates spell
strength (its meaning is different for each spell, but generally: the higher level, the better spell).
Note that neither npc_name nor npc_identity can be empty (as opposed to most of other
NPC functions).
For more info about identities, see ActivateNpc.

NpcDeactivate function

Deactivates specified NPC.

Script types:
all

Syntax:
NpcDeactivate (loc_uid, npc_name, npc_identity)

Description:
See NpcActivate for more details.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcFollowHero function

Makes the current NPC follow the hero.

Script types:
all

Syntax:
NpcFollowHero (loc_uid, npc_name, npc_identity)

Description:
See also NpcUnfollowHero.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcIsAlive function

Checks whether specified NPC is alive or not.

Script types:
all

Syntax:
NpcIsAlive (loc_uid, npc_name, npc_identity)

Description:
Returns nonzero value if specified NPC is alive or 0 if he (she) has been killed. The npc_name
specifies NPC's name (like 'Griswold'), while npc_identity is usually “#1”, which is default
identity for all NPCs. The specified creature does not necessarily have to be an NPC as long as it
has an unique name.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).
For more details about NPC identities, see NpcActivate function.

NpcKill function

Kills specified NPC.

Script types:
all

Syntax:
NpcKill (loc_uid, npc_name, identity)

Description:
The function just finds a location using given location UID, then finds a NPC with matching name
and identity, then makes the NPC dead.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcLoadScript function

Makes sure that the specified NPC's script has been loaded.

Script types:
all

Syntax:
NpcLoadScript (loc_uid, npc_name, npc_identity)

Description:
This function is necessary since when hero enters a location that had not been loaded before, all
NPC scripts are not loaded either until they are needed. This happens automatically when the hero
attempts to chat with the NPC and on several other occassions, but if the NPC script expects any
callbacks (e.g. OnKill), it needs to be loaded manually and it is up to you to do that in the right
moment!
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcRemoveScheduleTasks

Removes scheduled tasks matching the given task ID.

Script types:
all

Syntax:
NpcRemoveScheduleTasks (loc_uid, npc_name, npc_identity, task_id)

Description:
The function should not be used until future versions of the game engine.
The task_id parameter can be any unique integer number. It can be used to identify the
scheduled task.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcScheduleTaskGoToLoc

Schedules a new task – going into another location.

Script types:
all

Syntax:
NpcScheduleTaskGoToLoc (loc_uid, npc_name, npc_identity, task_id,
tgt_uid, x, y)

Description:
The function should not be used until future versions of the game engine.
The task_id parameter can be any unique integer number. It can be used to identify the
scheduled task.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty

string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcScheduleTaskGoToPos

Schedules a new task – going into another cell within the current location.

Script types:
all

Syntax:
NpcScheduleTaskGoToPos (loc_uid, npc_name, npc_identity, task_id,
hour, x, y)

Description:
The function should not be used until future versions of the game engine.
The task_id parameter can be any unique integer number. It can be used to identify the
scheduled task.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcSetActivity

Sets NPC's current activity.

Script types:
all

Syntax:
NpcSetActivity (loc_uid, npc_name, npc_identity, activity)

Description:
The activity parameter actually stands for AI profile name. For a list of available values, please
refer to the chapter “Monster definitions”.

The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcSetAttitude function

Changes NPC's attitude towards the hero.

Script types:
all

Syntax:
NpcSetAttitude (loc_uid, npc_name, npc_identity, attitude)

Description:
This is commonly used in dialog scripts to make NPC attack if he/she gets angry while talking with
the player or to calm down. Possible attitude values are: 0 – neutral, 1 – friendly, 2 – hostile.
If npc_name is not specified (empty string), the current hero's interlocutor is assumed, but this
behavior works properly only when the function is used in dialog scripts.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).

NpcSetGroup function

Finds a NPC named npc_name (he or she must already exist somewhere, it is not added
automatically with this call) and assigns him/her to the group grp_name.

Script types:
all

Syntax:
NpcSetGroup (loc_uid, npc_name, npc_identity, grp_name)

Description:
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).
For more info about identities, see NpcActivate.

NpcStartChat function

Opens a dialog window and begins a chat with the specified NPC.

Script types:
all

Syntax:
NpcStartChat (loc_uid, npc_name, npc_identity)

Description:
Please note that opening a dialog window means invoking a modal loop, so this should be the last
command in the script.
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty

string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).
For more info about identities, see NpcActivate.

NpcUnfollowHero function

Makes the current NPC stop following the hero.

Script types:
all

Syntax:
NpcUnfollowHero (loc_uid, npc_name, npc_identity)

Description:
The loc_uid parameter specifies the location where the NPC is to be found. It can be an empty
string, which means current location.
Both npc_name and npc_identity can be empty strings, which denotes current NPC (i. e. the
one that is chatting with the player).
See also NpcFollowHero.

RestrictMonsterGeneration function

Restricts monster generation in the current location.

Script types:
Location scripts

Syntax:
RestrictMonsterGeneration (restriction)

Description:
It is used when monster generation should occur only at a certain time range (for example: only at
night). The function also allows to restrict a total number of monsters.
It is recommended to place a call to this function in location's OnInit callback function.

Example:
In this example, monsters are generated only from 20 (or 8 P.M.) to 6 A.M. (that is, at night). At
most 3 monsters will be
generated.

RestrictMonsterGeneration ("time:20-6,number:3")

Reveal function

Reveals the current location

Script types:
all

Syntax:
Reveal (param)

Description:
Reveal just causes hero to see all cells in the current location. If we don't call Reveal after
setting up a starting location, hero will see only the cells being currently in his FOV (Field Of
View).

The param value can be safely ignored. It is reserved for future use. You can just put 0 here.

The function needs a location, so calling Reveal before a call to the SetStartLoc function will
result in a nice crash.

Rnd function

Returns a random integer number.

Script types:
all

Syntax:
Rnd (min, max)

Description:
If min is greater than max, the function returns max.

SetStartLoc function

Sets starting location.

Script types:
The OnLoad Script

Syntax:
SetStartLoc (loc_file_name, hero_x, hero_y)

Description:
Makes the game start in the location loaded from the loc_file_name file. The file should have
the '.map' extension, which you must also include in the loc_file_name. If loc_file_name
does not contain '.map', the game engine assumes that it is location UID. You should call
SetStartLoc immediately AFTER the LoadWorld function. If you do not keep this order of
calling, the behavior of the game will be undefined. You must not call the SetStartLoc function
more than once. You should call the SetStartLoc function only in the OnLoad script.

It also sets up hero's starting position. Our hero will be initially placed at the (hero_x, hero_y)
cell of the specified location.

SetupItemData function

Sets specified item's special data.

Script types:
all

Syntax:
SetupItemData (item_alias, data)

Description:
None

SetupItemMaterial function

Sets specified item's material.

Script types:
all

Syntax:
SetupItemMaterial (item_alias, material_name)

Description:
None

Sleep function

Makes the game sleep for a specified amount of time.

Script types:
all

Syntax:
Sleep (milliseconds)

Description:
All input is disabled while the application is sleeping. The screen is redrawn before the sleeping is
commited, so that all changes invoked from the script before the call for the Sleep function are
reflected.

TakeItem function

Removes specified item form hero's inventory (if it is there).

Script types:
all

Syntax:
TakeItem (item_alias)

Description:
The item with the specified alias must be declared first. If hero does not have the item (or the item
count is not sufficient), nothing happens.

TimestampDiff function

Calculates the difference between two given timestamps.

Script types:
all

Syntax:
TimestampDiff (time1, time2)

Description:
Timestamps can be obtained using the Now function.

TextBox function

Displays (potentially long) text in a window.

Script types:
all

Syntax:
TextBox (msg_tag)

Description:
The msg_tag parameter denotes string identifier (the string must be present in the strings.XX.ini
file).
See also: DelayedMsgBox, MsgBox

TutorialShow function

Displays specified tutorial page.

Script types:
all

Syntax:
TutorialShow (stage_tag)

Description:

Although this function can be used in all script types, it is the best to place it in the Handler. See the
appropriate section for more information,

TutorialIsStage function

Checks if the specified tutorial stage is the current stage.

Script types:
all

Syntax:
TutorialIsStage (stage_tag)

Description:

Although this function can be used in all script types, it is the best to place it in the Handler. See the
appropriate section for more information.

ValueOf function

Returns value of the specified variable.

Script types:
all

Syntax:
ValueOf (var_name)

Description:

Allows to retrieve the value of a variable. The variable is found by name. This is useful when the
syntax does not allow to use variable reference – especially in variable assignment:

var a = 0

var b = a // wrong – syntax error

var c = ValueOf (“a”) // OK

Keyword list

The following is an alphabetical list of all reserved words in U. You must not use them as
identifiers (variable names, action names or function names). Depending on the context, some of
these keywords may be actually allowed as identifiers, but don't rely on this behavior, as in the near
future this may be a subject of change.

You should also avoid using predefined function names as identifiers (the complete list can be
found in this document).

action
alarm
call
companion_attack
companion_follow
companion_wait
cls
cure
cure_limb
decr
default
else
end
extends
for
function
goto
i+

i-
iadd
icmp
if
iin
iloop
incr
input
iout
ishl
ishr
isub
item
null
option
overridden
print
println
repair
return
super
system
text
trade
var

Additionally, you must not use this command name:

SetDefaultAction

INI Files (Game Object Definitions)

General information

Numerous game parameters are kept in INI files. They all reside in the \Data directory.
Format of Fame INI files is very similar to Windows INI files, but internal (a lot faster) parser is
used to deal with them, carrying several additional possibilities.

Several character encoding types can be used, but UTF-8 without BOM is recommended, as it is
widely accepted as a portable encoding type.

Sections

INI files are divided into sections. A file must have at least one section, and there must be at least
one definition in each section (otherwise, it is ignored). No definition can be placed without a
corresponding section.

Section headers

Each section is designated by a header, which looks like:

[Name]

Header name must only contain alphanumeric characters. Spaces are not allowed. An underscore
isn't allowed either.

Numerical values

A definition should look like:

name = value

White spaces before and after the '=' sign are optional. You can also put more than one space
between tokens, this is correct.

The hexadecimal notation is also allowed. It is especially useful for specifying colors. Hexadecimal
values start from the '#' character. Color values usually consist of three hexadecimal octets (R, G,
B). Example: #E8ECE8.

Strings

Unlike Windows INI, you should double-quote all string values:

name = “value”

It is not actually a problem for simple parsers to handle strings without quotes, but it looks much
more clearly, especially when there are many long definitions in a file.

Data types

INI parser supports five data types: four integer ones (8-bit, 16-bit, signed/unsigned 32-bit) and
string. These are: 'int' (-2147483648 to 2147483647), 'unsigned char' or 'uchar' (0 to 255),
'unsigned short' or 'ushort' (0 to 65535), 'unsigned int' or 'uint' (0 to 4294967295). Values with all
bits set to 1 are considered invalid.

Comments

All lines starting with semicolon ';' are treated as comments. If any spaces are followed by ';', they
are ignored. You cannot place a comment in the same line as a definition.

INVALID DEFINITION:

value = 2342345 ; error

VALID DEFINITION:

; OK
value = 2342345

Localization

INI file names conform to the following pattern: name.XX.ini, where XX is a language identifier (e.
g. en – English). By default, all actual data are contained in Polish INI files, while English ones
contain only text strings.

Current game language can be set through the Data\game.ini file. You can set lang_ini and
lang_script parameters there as well (this changes language version of INI file that actual numerical
parameters are read from).

Monster definitions

Monster definition file has the following format:

[header]
monsters=N

[monster1]
parameter=value1

[monster2]
parameter=value2

...

[monsterN]
parameter=valueM

All parameters are optional, unless explicitly stated that they are required.

Parameter Data Type Description Default

ai string AI profile name. See below. “AI_ProfileHunter”

brain string Brain script file. “monbase.u”

char string Character (in the ASCII mode). -

color uint Color (in the ASCII mode). (gray)

description string Identity string for NPCs. In case of monsters it
is ignored.

"New Monster"

dexterity ushort Monster dexterity. In the current version
ignored.

0

dmg1 ushort Minimum damage caused by monster. 0

dmg2 ushort Maximum damage caused by monster. 0

family ushort Race (humanoids, undeads etc.). See below. 0

features string Special features possessed by the monster. See
below.

(empty string)

flags ubyte Any combination of creature flags. See below. 0

hp1 ushort Minimum Hit Points 0

hp2 ushort Maximum Hit Points 0

name string Name (e. g. “goblin”). Required. -

nameb string Name in accusative case. Required. -

named string Name in genitive case. Required. -

Parameter Data Type Description Default

namem string Name in plural form. Required. -

namemd string Name in plural form and genitive case.
Required.

-

occurrence ushort Defines how frequently monster appears in
random-generated locations.

5 = very often

picindex ushort Picture index in Data\monsters.bmp. 0

regions string Defines regions when the monster occurs. See
below.

(empty string)

resnormal ubyte Melee resistance (0-100%). 0

resmagic ubyte Magic resistance (0-100%). 0

resfire ubyte Fire resistance (0-100%). 0

rescold ubyte Cold resistance (0-100%). 0

resside ubyte Resistance to side (sword-like)
weapons (0-100%)

0

resranged ubyte Resistance to ranged weapons, including all
thrown weapons (0-100%)

0

resaxes ubyte Resistance to axes (0-100%) 0

resblunt ubyte Resistance to blunt weapons, including
hammers, mauls, maces, clubs (0-100%)

0

ressilver ubyte Resistance to weapons made from
silver (0-100%)

0

settlements string Random settlement configuration. See below. (empty string)

sound string Description of a sound made typically by the
monster. Used as a warning for the player.

(empty string)

soundm string Same as above, plural form. (empty string)

title string Title (displayed when looking at the monster). (empty string)

weight ushort Monster weight. 0

wpncateg ubyte Weapon category. See below. 0

xp ulong Extra experience points (for killing). 0

Melee resistance means resistance to all types of conventional weapon damage (non-magic). This
value overrides resside, resranged, resaxes and resblunt if they are specified as well.

The ressilver parameter only applies when the attacker (typically the hero) is using a silver weapon
and it overrides all other resistances.

AI profiles

The ai parameter value can be:

Value Description

AI_ProfileHunter The monster actively seeks a prey (most likely the hero) and immediately
attacks if only it can.

AI_ProfileLazy The monster does nothing unless attacked.

AI_ProfileRanger The monster is able to attack from distance. It will attempt to come
closer to its enemy, but not too close. Otherwise it acts much like
AI_ProfileHunter.

AI_ProfileWanderer The monster wanders around randomly unless attacked.

AI_ProfileWizard The monster is able to cast spells. Otherwise it acts much like
AI_ProfileRanger.

Families

The family parameter value can be:

Value Description

0 Human

1 Humanoid (e. g. goblin)

2 Undead

3 Spider

4 Animal

5 Golem

6 Plant

Monster family determines many things. For example golems and undeads never retreat and do not
bleed from their wounds and non-humanoids never makes fire when camping in the wilderness.

Weapon categories

The wpncateg parameter can affect combat, e. g. monsters using teeth can bite off hero's leg while
those who use fists cannot do that. Acceptable values are:

Category Description

0 Bare fists or claws

1 Sword

2 Axe

3 Hammer

4 Bow or crossbow

5 Thrown weapon

6 Pole weapon

7 Knife

8 Staff

9 Teeth

Flags

Monster flags are:

Flag name Value Description

flgUseMonPic 1 NPC uses picture from monsters.bmp (not npc.bmp, which
is default)

flgDragon 2 Monster is a dragon (and is bigger than 1 tile).

flgLoadScript 4 NPC script should be always loaded with the location (by
default scripts are loaded only on demand).

flgFemale 8 Monster is a female (by default every monster is a male).

flgSummonable 16 Monster (or NPC) can be summoned by a spell.

flgCommonNPC 32 Only applies to NPCs. Common NPCs can have multiple
instances at time (normal NPCs must be unique), but unlike
monsters they can chat and trade with the hero. They can
also have their own inventory and cast spells.

flgCorpseInedible 64 Only applies to NPC definitions. Most of corpses can be
eaten by hero (some of them have special effects when
eaten, but this is hardcoded in the C++), but some cannot
(e. g. corpse of a golem).

flgCanFly 128 Monster can fly (cross the water tiles without drowning or
slowing down)

flgCanSwim 256 Monster can swim (cross the water tiles without drowning)

Features

Monster features can be:

Feature Tag Feature
Type

Description

attack-fire No value Monster can breath fire.

curse-equip No value Monster can curse hero's equipment.

damage-attacker No value Monster automatically damages the attacker.

deflect-spells No value Monster can deflect offensive spells.

drain-focus Single value Monster can drain hero's focus points.

thief-inv Single value Monster can steal hero's items (from inventory).

thief-equip Single value Monster can steal hero's items (from current
equipment).

teleport No value Monster can teleport.

vamp Single value Monster is a vampire (needs to drink blood, no
other food is suitable).

disease-attack Single value Monster can spread brain disease.

aggressive No value Monster attacks every creature it sees.

bleeding-attack Single value Monster can cause bleeding.

spawn-attacked Single value Monster can spawn its clones when attacked.

spawn Single value Monster can spawn its clones.

confusion Single value Monster can cause confusion.

explode Single value Monster can explode instead of a normal attack.

attack-poison Double
value

Monster can poison the attacked creature.

attack-paralysis Double
value

Monster can paralyse the attacked creature.

“No value” means that the very presence of the feature tag is required. “Single value” means that a
range of number is additionally required, “Double value” means that two ranges are required.

A “No value” feature can be specified as follows:

features = "thief"

A “Single value” feature can be specified as follows:

features = "drain-focus:3-5"

Despite the “single” word, a range must be specified. In the above example, the range is 3-5,
meaning that 3 to 5 points of focus may be drain in a single turn.

A “Double value” feature can be specified like this:

features = "attack-poison:20-50,1-2"

Two or more different features can be specified as follows:

features = "drain-focus:3-5;curse-equip;deflect-spells"

Regions

Certain monsters may only be encountered in specific areas. The parameter “regions” is used to
specify these areas for a monster definition. There are three levels of generality that can be used in
this parameter's value:

• high level (either “underground” or “wilderness”)
• medium level (terrain type)
• low level (location UID)

These levels can be conbined, making a general rule with some additional places. For instance, to
allow a monster to occur in underground, but also in the “burned” terrain, you need to use:

regions = "underground,ter:burned"

Terrain names should refer to names used in the terrain.XX.ini file.

The lowest level is used as follows:

regions = "ter:burned,uid:firetemple1"

Location UID can be obtained from the locations.XX.ini file.

The “underground” keyword allows to specify dungeon flavor. For example, to make a monster
generate only in flooded dungeons, you should write:

regions = "underground:flooded"

Every location can have the flgExplicitMonsterRegion flag set, which means that only monsters that
refer to the same location by its UID in the Regions parameter can be generated there.

Regions are used:
• when generating a random location
• when generating a monster encounter (if the region conditions are not met, the encounter

does not happen)

Settlements

Certain monster types are used to occupy random settlements. These monsters have the
“settlements” parameter specified. Using this parameter you can define services provided by
inhabitants, animals kept by them, shops and treasures found in chests inside buildings.

Keyword Meaning Parameters

Name Description

shops Enables generating shops. - -

service Enables NPCs providing services. blacksmith NPC able to repair items.

healer NPC able to cure diseases and
broken limbs.

treasure Specifies which items are found in
treasure chests.

food Food.

potions Potions.

gold Gold.

weapons Weapons, armor and

ammunition.

ore Ore.

materials Ore, ingots and rods.

gems Gems.

rocks Ordinary rocks.

coal Coal.

scrolls Scrolls.

misc Various stuff.

link Makes this monster type linked to
another. See below.

- -

role Specifies role of an NPC in a
settlement. See below.

- -

animal Makes this monster an animal kept in
settlements. See below.

- -

Every monster type should have some “cloned” types. Their share most of their monster.ini data,
but have different names, for instance: “goblin” and “goblin shopkeeper”, and different talk script.
Every kind of service (shopkeeper, blacksmith, healer) needs a separate “clone” type. These
“clones” must be linked to the “original” type. Here is an example of linking for a goblin
shopkeeper:

settlements = "link:goblin,role:shopkeeper"

Note: not every monster with a “link” keyword should define its role. You can just link to some
type. This makes the monster an inhabitant of the settlement, but without an apparent role.

Animals should link to a monster type, too, but they use a different keyword. Goblins do not have
any animals, so let us see how to link a cow to appropriate monster types (humans, trolls and
cyclopes):

settlements = "animal:citizen,troll,cyclope"

Now some examples of other keywords. Here is a settlement setup for goblins. It specifies two
types of treasures (food and potions) and enables shops:

settlements = "treasure:food,treasure:potions,shops"

This is how to enable some additional services:

settlements =
"treasure:gold,shops,service:blacksmith,service:healer"

Item definitions

Item definition file has the following format:

[header]
items=N

[item1]
parameter=value1

[item2]
parameter=value2

...

[itemN]
parameter=valueM

All parameters are optional, unless directly stated that they are required.

Parameter Data Type Description Default

ac ubyte Armor class. Applies only to armors, helms
and shields.

0

bonus string List of additional special bonuses, see below. “”

category ubyte Category. Full list below. 18

color uint Color (in the ASCII mode). (gray)

data uint Additional data. See remarks below. 0

defmat ubyte Default material (random material by default).
See remarks below.

1

dmg1 ubyte Minimal damage caused by item. Applies only
to weapons.

0

dmg2 ubyte Maximum damage. 0

durab ushort Durability (how much damage an item can
receive before being completely destroyed).

0

flags ubyte Flags. See below. 0

indefinite string Indefinite article (valid for specific languages
only, e. g. English)

“a”

invpicindex ushort Picture in inventory. 0

name string Item name. Required. “New Item”

nameb string Item name in accusative form. Required. “New Item”

namem string Item name in plural form. Required. “New Item”

namemd string Item name in plural possessive form.
Required.

“New Item”

Parameter Data Type Description Default

nutrition ushort Nutrition. Applies only to food. 0

occurrence ubyte Determines if an item will appear in random-
generated locations. 0 means that it will not,
any non-zero value means that it will appear.

5 = very often

picindex ushort Picture in main game screen. 0

value uint Item value in shop. Equal to item's price when
trader's attributes are: 1.0 and 1.0. This
attribute also determines how frequently an
item appears in random-generated locations.

0

weight ushort Item weight. Small items such as rings may
weigh 0.

0

Categories

Item categories are:

Category number Description

1 Swords

2 Axes

3 Mauls, hammers & maces

4 Bows & crossbows

5 Thrown weapons

6 Pole weapons

7 Knives & daggers

8 Staves

9 Shields

10 Helms & caps

11 Armor

12 Rings

13 Amulets

14 Books

15 Scrolls

16 Potions

17 Valuables

18 Other

19 Food

20 Materials

Category number Description

21 Tools

22 Explosives

23 Ammo

Data

Data – the meaning of this parameter depends on item's category. It is explained in the table below:

Item category Meaning of the 'Data' field

Spell books and scrolls Spell index (please see the 'Spell definitions' chapter)

Moulds and rods Type of item that can be created using the mould or rod

Unique items Index of the unique item

Material

Possible materials are defined in the mat.xx.ini file (where xx is language ID). Normally, 0 means
“other material”, which is suitable for most of items. All other materials are metals, which are
mostly used to create weapons and armor. 1 means “random material” (actually random metal). 2 is
typically iron, 3 is copper etc.

Flags

Item flags are:

Flag name Value Description

flgUniqueItem 1 Item is unique (artifact).

flgSmallItem 2 Item can be placed in sack.

flgTwoHanded 4 Item must be held in two hands (if weapon).

flgReadable 8 Item is readable.

flgAltCorpse 16 n/a

flgSacrifExcept 16 Item can be sacrificed even if its occurrence parameter
equals 0.

flgBow 32 Item can fire arrows.

flgCrossbow 64 Item can fire bolts.

flgBottle 128 Item is an empty bottle, vial or flask (not drinkable).

flgLightSource 256 Item is a source of light (torch, lamp etc.)

flgNoIdentify 512 Item does not need to be identified, although it does have

Flag name Value Description

some special properties (bonus)

To combine multiple flags, just add their values, for instance if you want your item to be an unique
bow, set its flags to 33 or, more conveniently, to 1|32.

Bonuses

Special item bonuses are defined using the Universal List Format (ULF). The syntax is:

id1:n0_1-n1_1,m0_1-m1_1;id2:n0_2-n1_2,m0_2-m1_2

The “id” parameter specifies a predefined identifier (see the table below). The value of a bonus is a
random number from the range n0 to n1. The parameters m0 and m1 specify additional data
(currently not used). The format allows an arbitrary number of bonuses, but currently only
definitions with 2 bonuses are supported.

Available ids:

id Description Min Max

str Strength bonus 1 ?

dex Dexterity bonus 1 ?

vit Vitality bonus 1 ?

int Intelligence bonus 1 ?

app Appearance bonus 1 ?

nrm Melee (normal) damage resistance 1 100

fir Fire resistance 1 100

col Cold resistance 1 100

mag Magic resistance 1 100

poi Poison resistance 1 100

learn Boost learning - -

focus Faster focus regain - -

easy-aim Bigger chance to hit in a ranged attack - -

farsight Bigger FOV radius - -

freemind Resistance to brain disease 1 100

Examples:

ULF Resulting bonus

int:1-2,0-0 +1 or +2 to Intelligence

dex:2-2,0-0;str1-1,0-0 +2 to Dexterity, +1 to Strength

poi:5-5,0-0;vit1-2,0-0 +5% Poison Resistance, +1 or +2 to Vitality

fir:1-10,0-0 +1-10% Fire Resistance

Spell definitions

Spell definition file has the following format:

[header]
spells=N

[spell1]
parameter=value1

[spell2]
parameter=value2

...

[spellN]
parameter=valueM

All parameters are optional, unless directly stated that they are required.

Parameter Data Type Description Default

energyamount ushort Energy amount used to cast spell (do not
confuse with focus cost).

1

focuscostbase ushort Focus required to cast spell. 5

flags ushort Spell flags (explained below). 0

icon ushort Picture index used as quick spell icon. 0

name string Spell name. Required. -

needaim bool If set to true (nonzero), spell needs aiming. 0

neutrality ushort Spell neutrality (0 – offensive, 1 – neutral, 2 –
defensive)

1

piccount ushort Total number of spell animation frames. 1

picstart ushort Index of first image for spell effect animation. 0

You can change parameters of the existing spells if you want to, but please don't bother adding new
spells – they will not work automatically.

Flags

The spell flags are:

Flag Value Description

flgSummon 1 The spell is a summon spell. It results in a
creation of new monsters that will help the caster
fighting their enemies.

flgHeroOnly 2 The spell can only be cast by hero. It is not
suitable for NPCs.

flgContact 4 The spell affects only creatures standing at 8 cells
surrounding the spellcaster.

Terrain definitions

Terrain definition file has the following format:

[header]
terrains=N

[terrain0]
parameter=value1

[terrain1]
parameter=value2

...

[terrainN-1]
parameter=valueM

All parameters are optional, unless directly stated that they are required. Terrain definitions that
have name of “???” (exactly three characters) are ignored.

Parameter Data Type Description Default

apmod ushort AP modifier. Not used. 0

automapcolor uint 32-bit color index on AutoMap in RGBA
format. Hex value allowed (see: Numerical
Values).

0 (black)

char ubyte Character (in the ASCII mode) .

color uint Color (in the ASCII mode). (gray)

flags ubyte Terrain flags. See below. 0

name string Terrain name. Required. -

nameb string Terrain name in accusative form. Required. -

picindex ushort Index of first picture (of 3 total). 0

deflocname string Default location name (it is used when name is
not specified by the user). Required.

-

You can specify the special value #DEAD (or 57005) as automapcolor. Such an object is drawn on
the auto-map using alpha value of 0 (i.e. it is fully transparent). This is useful for objects that
shouldn't be displayed on the auto-map.

Flags

Terrain flags are:

Flag Value Description

flgSingleTile 1 The terrain entry has only 1
bitmap tile assigned (usually
has 3). Example: dungeon floor.

flgInterior 2 The terrain entry represents
interior (weather effects does
not affect it)

flgWater 8 The terrain entry represents
water (hero can dive into it and
swim).

Object definitions

Please note that the word “Object” in this document sometimes refers to terrain objects (e. g. trees,
walls, stones) and sometimes to game objects in general (including monsters, spells, items and so
on). I know this is very confusing. I tried really hard to coin a better term, but failed miserably. You
must live with it somehow.

Objects definition file has the following format:

[header]
objects=N

[terrain0]
parameter=value1

[terrain1]
parameter=value2

...

[terrainN-1]
parameter=valueM

All parameters are optional, unless directly stated that they are required.

Parameter Data Type Description Default

automapcolor uint 32-bit color index on AutoMap in RGBA
format. Hex value allowed (see: Numerical
Values).

0

char ubyte Character (in the ASCII mode) #

color uint Color (in the ASCII mode). (gray)

flags ubyte Object flags. Detailed list below. 0

group ushort Object group. Better not use :-). 0

name string Terrain name. Required. -

nameb string Terrain name in accusative form. Required. -

picindex ushort Index of first picture (of 3 total). 0

metadata string Additional data. See the table below. “”

Metadata

Currently two values have a meaning for objects:

Name Value count Description

tiles 2 Specifies number of tiles that together make a bigger object.
Makes sense only for big objects, i.e. those in the group 100.

base 1 Base tile index – first object definition for a big object.

Big objects actually consist of a number of 'sub-objects'. The first 'sub-object' of each big object is
called a 'base' object and typically has the metadata field containing tiles, while all other 'sub-
objects' have metadata with base.

Example: a big tree's first 'sub-object' may appear like this:

[Terrain46]
name = "big tree"
group = 102
picindex = 101
metadata = "tiles:2-2"
// ...

… while three other 'sub-objects' may look like this:

[Terrain47] // 48, 49...
name = "big tree"
group = 102
picindex = 102 // 103, 104...
metadata = "base:46"
// ...

Flags

Object flags are:

Flag name Value Description

flgPassable 1 Object is passable (hero can stand on it).

flgDestructible 2 Not used.

flgFlammable 4 Not used.

flgWater 8 Object represents water (hero can dive into it and swim).

flgObstructFov 16 Object affects hero's Field of Vision (FOV)

flgHurtsKicker 32 Anyone who kicks this objects receives damage.

flgDoor 64 Object is a door (can be closed and opened)

These flags can be combined (see Item Definitions).

Group

Defines object's group used by the Location Editor. There are too many objects that can be placed
using the editor, so they cannot be shown all at once. Instead the object panel displays only several

available objects on a single page and additionally uses groups for easier navigation.

Group
Number

Group Name Special Group?

0 Miscelanneous no

1 Village no

2 Wilderness no

3 Desert no

4 Dungeon no

5 Burned Grounds no

6 Town no

7 Fortifications no

8 (not used) no

9 (not used) no

10 (not used) no

11 (not used) no

12 Items no

13 NPCs no

14 Monsters no

15 Terrains no

16 Portals no

17 Generators no

18 Signs no

19 Doors no

20 Altars no

21 Lodes no

100 Big Objects yes

200 Water Objects yes

300 Walls yes

400 Road Objects yes

Special group numbers are used, as the name cleverly suggests, in a special way. They can be
combined with other (“normal”) group numbers, so that they actually appear in both groups in the
editor. For example, a section of a wall that typically appears in village buildings may have group
number “301”, meaning that it belongs to the group “Village” (1) and the special group “Walls”
(300).

For objects in the group “Big Objects”, see the metadata attribute.

Hero definitions

Hero definitions specify gender and appearance of the hero. Player can choose between these
definitions at the new game start-up. There are no string parameters in a hero definition, so they are
language independent. They are stored in hero.ini. The file has the following format:

[header]
heroes=N

[hero0]
parameter=value1

[hero1]
parameter=value2

...

[heroN-1]
parameter=valueM

All parameters are optional, unless directly stated that they are required.

Parameter Data Type Description Default

gender ushort Gender flag (0=male, 1=female). 0

pic ushort Index of the main (default) picture. 0

picdead ushort Index of the death picture (displayed when
hero is dead).

0

picfrozen ushort Index of the frozen picture (displayed when
hero becomes frozen by a spell etc.).

0

Encounter definitions

Encounter definitions specify random monster encounters that may happen to the hero while they
are traveling through the wilderness. Encounters only apply to random locations in the wilderness.
They have no effect on monsters encountered in the underground locations or any kind of
predefined locations.

They are stored in enc.XX.ini. The file has the following format:

[header]
encounters=N

[enc0]
parameter=value1

[enc1]
parameter=value2

...

[encN-1]
parameter=valueM

All parameters are optional, unless directly stated that they are required.

Parameter Data Type Description Default

EncounterText string A text message that is displayed when the hero
triggers the encounter.

0

InternalText string An internal text message. It is not displayed in
the game, but might be used by development
tools (e. g. in the editor) or in the code.

0

DifficultyLeve
l

float The encounter may happen only if the
difficulty level for it matches the difficulty
level of the location (i. e. it's not greater than
the location level and not significantly lower
than it).

1.0

MetaData string Various additional data (see below). (empty string)

MonTypeX* ushort Identifies monster (or NPC) to be encountered. 0

MonNumLow
X*

ushort Specifies number of monster instances to be
created. The actual number is a random
integer from the range (MonNumLowX,
MonNumberHighX).

0**

MonNumberH
ighX*

ushort See above. 0**

ScriptX* string Script file to be used if the creature to be
encountered is a NPC. Ignored for monsters.

(empty string)

* Where X is a consecutive integer number (1, 2, 3 and so on).
** The default value is 1 if X is greater than 1.

The value of MetaData defines the behavior of encountered creatures. Possible values are:

• neutral – creatures does not attack the player (unless in self-defence)
• hostile – creatures attack the player immediately

To create a battle encounter (i.e. one group of creatures fighting another group), you must place at
least one monster type with MetaData equal to attackers and at least one with MetaData
equal to defenders. These values do not combine with neutral or hostile.

Location definitions

While locations are actually defined using Location Editor and WorldEdit, some of their attributes
are stored elsewhere – in the locations.xx.ini file (xx is language code). These attributes are:

• section locnames – location names (as displayed in the game)
• section worldparts – names of bigger world parts (also known as regions)
• section predefined – predefined parts of random-generated locations
• section map – world map icons for locations

Names are mapped to locations' UIDs (both for locnames and worldparts).

Sections predefined and map contain rectangles – two pairs of coordinates (x and y, width and
height). Predefined rectangleis the area that does not get overwritten when the location is being
generated – its terrain, objects, items and monsters will remain there. However, the area can be
moved to some other coordinates. All the stuff outside the 'predefined' rectangle will be overwritten
by some random-generated things.

The rectancles in map refer to the worldmap.bmp file, which contains the world map, as well as
icons that might be displayed on top of it. In this case, the rectangle defines which part of the
bitmap contains an appropriate icon representing the location.

	Introduction
	Configuring Notepad++
	Syntax coloring
	Compiling scripts
	Handling compilation errors

	U Scripting Language
	Script types
	Language basics
	General information
	Simple commands
	The Print and Println commands
	The Input command
	The System command
	The Incr and Decr commands
	The Exit command

	Comments
	Variables
	Conditionals
	The basics of conditional expressions in U
	The 'else' block
	Operators

	Loops
	Functions
	Labels

	Inheritance
	Inheriting functions
	Inheriting variables

	Writing dialog scripts
	Actions
	Control flow in actions
	Items
	Repairs
	Curing
	Butchery and Cooking
	Traveling through locations
	Dialog script localization
	Dialog Data
	Callback functions
	Location callbacks
	NPC callbacks
	Item callbacks
	OnGiveItem
	OnSacrificeItem
	OnSacrificeRareItem

	Dropping items

	Writing trade profiles
	Writing location scripts
	Writing item scripts
	Starting item sets
	Functions
	ActivateSpecial function
	AddCompanion function
	AddDragon function
	AddGroup function
	AddInvItem function
	AddItem function
	AddItemEx function
	AddInvItemByAlias function
	AddInvItemEx function
	AddLocLightEffect function
	AddLocMsgEffect function
	AddLocSoundEffect function
	AddMonster function
	AddMonsterToGroup function
	AddObject function
	AddTwoArenaMonsters function
	AnyAliveMonsters function
	Battle function
	BeginQuest function
	Chance function
	CreateDungeonSite function
	CreatureAddMiscItem function
	CreatureIsAlive function
	CreatureSetAttitude function
	DeactivateSpecial function
	DefineTradeEntities function
	DelayedMsgBox function
	DeleteAllItems function
	DeleteAllMonsters function
	DeleteItem function
	DeleteMonster function
	DeleteObject function
	DiffDays function
	DiffHours function
	DiffMonths function
	DiffSeconds function
	DiffYears function
	EndQuest function
	EquipAmmo function
	EquipAmmoBS function
	EquipItem function
	EquipItemBS function
	GiveItem function
	HasGroupWonBattle function
	HasHeroEquippedItem function
	HasHeroItem function
	HasHeroSomeItem function
	HeroGainXP function
	HeroGetAppearance function
	HeroGetDeityStatus function
	HeroGetDexterity function
	HeroGetIntelligence function
	HeroGetSkillLevel function
	HeroGetStrength function
	HeroGrantChampionStatus function
	HeroIsAligned function
	HeroIsAnyLimbMissing function
	HeroGetVitality function
	HeroLearnRecipe function
	HeroLearnSkill function
	IdentifyItemType function
	GetDialDataInt function
	IsBattleEnded function
	IsLocFirstVisit function
	IsPlayerWoman function
	LoadTradeProfile function
	LockDoor function
	MsgBox function
	MsgLog function
	Now function
	NpcActivate function
	NpcAddEnemy function
	NpcAddGuardedCell function
	NpcAddInvItem function
	NpcAddSpell function
	NpcDeactivate function
	NpcFollowHero function
	NpcIsAlive function
	NpcKill function
	NpcLoadScript function
	NpcRemoveScheduleTasks
	NpcScheduleTaskGoToLoc
	NpcScheduleTaskGoToPos
	NpcSetActivity
	NpcSetAttitude function
	NpcSetGroup function
	NpcStartChat function
	NpcUnfollowHero function
	RestrictMonsterGeneration function
	Reveal function
	Rnd function
	SetStartLoc function
	SetupItemData function
	SetupItemMaterial function
	Sleep function
	TakeItem function
	TimestampDiff function
	TextBox function
	TutorialShow function
	TutorialIsStage function
	ValueOf function

	Keyword list
	INI Files (Game Object Definitions)
	General information
	Sections
	Section headers
	Numerical values
	Strings
	Data types
	Comments
	Localization

	Monster definitions
	AI profiles
	Families
	Weapon categories
	Flags
	Features
	Regions
	Settlements

	Item definitions
	Categories
	Data
	Material
	Flags
	Bonuses

	Spell definitions
	Flags

	Terrain definitions
	Flags

	Object definitions
	Metadata
	Flags
	Group

	Hero definitions
	Encounter definitions
	Location definitions

